Show simple item record

dc.contributor.authorดร.พิชิต กิตติสุวรรณ์en_US
dc.date.accessioned2016-05-17T07:27:06Z
dc.date.available2016-05-17T07:27:06Z
dc.date.issued2014-08
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/68
dc.description.abstractThe distortion of medical images by noise is common during its processing and transmission. So, this research is concerned with wavelet-based X-ray image denoising using Bayesian techniques. Indeed, one of the cruxes of the Bayesian image denoising algorithms is to estimate the local variance of the image. Here, we employ maximum a posterior (MAP) estimation to calculate local observed variance with Pareto distribution prior for local observed variance and Laplacian or Gaussian distribution for noisy wavelet coefficients.en_US
dc.description.sponsorshipRajamangala University Of Technology Rattanakosinen_US
dc.language.isoTHen_US
dc.publisherมหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์en_US
dc.subjectการลดสัญญาณen_US
dc.subjectภาพถ่ายen_US
dc.subjectรังสีเอ็กซ์en_US
dc.subjectฟังก์ชันen_US
dc.subjectปริภูมิเวฟเล็ตen_US
dc.titleX-Ray Image Denoising using Multivariate Shrinkage Function in Wavelet Domainen_US
dc.title.alternativeการลดสัญญาณรบกวนภาพถ่ายรังสีเอ็กซ์ด้วยฟังก์ชันหดตัวชนิดหลายตัวแปรในปริภูมิเวฟเล็ตen_US
dc.typeResearchen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record