Show simple item record

dc.contributor.authorChalermpol Klaynilen_US
dc.date.accessioned2019-11-21T04:19:08Z
dc.date.available2019-11-21T04:19:08Z
dc.date.issued2018
dc.identifier.urihttp://repository.rmutr.ac.th/123456789/1184
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1184
dc.description.abstractThis research aimed to study the spring-back behavior in warm and hot bending process. From the studied parameters, such as punch radius, the materials are JIS G3135: SPFC440, SPFC590 and SPFC780 high strength steels 1.0 mm. of thickness. Spring-back angles after bending process are measured and calculated to spring-back factor (KR) . The study proposed the model to predict the spring-back values in U-bending by back propagation neural network model. The results showed that the effect of temperature increase can make the spring-back decrease and spring-back angle will increase as the material which has higher tensile strength and the increasing punch radius will increase the spring-back angle and the spring-back factor value of the calculation will decrease when the spring-back angle increase. The result from using artificial neural network to predict spring-back that can be predicted accuratelyen_US
dc.language.isoTHen_US
dc.publisherRajamangala University Of Technology Rattanakosinen_US
dc.subjectHigh Strength Steelen_US
dc.subjectWarm and Hot Formingen_US
dc.subjectSpring-backen_US
dc.subjectNeural Network -backen_US
dc.subjectNeural Networken_US
dc.titlePrediction of Spring-back in Warm and Hot Forming of High Strength Steels by Back Propagation Neural Network Modelen_US
dc.title.alternativeการทำนายค่าการดีดตัวกลับในการพับขึ้นรูปแบบอุ่นและร้อนของเหล็กกล้าความแข็งแรงสูงด้วยแบบจำลองโครงข่ายประสาทเทียมen_US
dc.typeResearchen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record