dc.contributor.author | Chalermpol Klaynil | en_US |
dc.date.accessioned | 2019-11-21T04:19:08Z | |
dc.date.available | 2019-11-21T04:19:08Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://repository.rmutr.ac.th/123456789/1184 | |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/1184 | |
dc.description.abstract | This research aimed to study the spring-back behavior in warm and hot
bending process. From the studied parameters, such as punch radius, the materials
are JIS G3135: SPFC440, SPFC590 and SPFC780 high strength steels 1.0 mm. of
thickness. Spring-back angles after bending process are measured and calculated to
spring-back factor (KR) . The study proposed the model to predict the spring-back
values in U-bending by back propagation neural network model. The results showed
that the effect of temperature increase can make the spring-back decrease and
spring-back angle will increase as the material which has higher tensile strength and
the increasing punch radius will increase the spring-back angle and the spring-back
factor value of the calculation will decrease when the spring-back angle increase. The
result from using artificial neural network to predict spring-back that can be predicted
accurately | en_US |
dc.language.iso | TH | en_US |
dc.publisher | Rajamangala University Of Technology Rattanakosin | en_US |
dc.subject | High Strength Steel | en_US |
dc.subject | Warm and Hot Forming | en_US |
dc.subject | Spring-back | en_US |
dc.subject | Neural Network -back | en_US |
dc.subject | Neural Network | en_US |
dc.title | Prediction of Spring-back in Warm and Hot Forming of High Strength Steels by Back Propagation Neural Network Model | en_US |
dc.title.alternative | การทำนายค่าการดีดตัวกลับในการพับขึ้นรูปแบบอุ่นและร้อนของเหล็กกล้าความแข็งแรงสูงด้วยแบบจำลองโครงข่ายประสาทเทียม | en_US |
dc.type | Research | en_US |