• Login
    View Item 
    •   DSpace Home
    • คณะ/วิทยาลัย (Faculty and College)
    • คณะบริหารธุรกิจ (Faculty of Business Administration)
    • บทความ (Article)
    • View Item
    •   DSpace Home
    • คณะ/วิทยาลัย (Faculty and College)
    • คณะบริหารธุรกิจ (Faculty of Business Administration)
    • บทความ (Article)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determining appropriate of Data Classification with Multi-Layer Perceptron, Support Vector Machines and Radial Basis Function

    Thumbnail
    View/Open
    watcharinPaper_NCCIT_2012 (752.6Kb)
    Date
    2012
    Author
    วัชรินทร์ วรินทักษะ
    กิตติศักดิ์ โชติกิติพัฒน์
    ทรงพล นคเรศเรืองศักดิ์
    Metadata
    Show full item record
    Abstract
    This research is using data mining to compare the identification information of the model created by the Multi-layer Perceptron Neural Network, Support Vector Machines and Redial Basis Function. The model consisted of 30 models of three series data from the UCI that features different is Vote, Audiology and Ionosphere to measure the efficiency and accuracy of data classification, Precision, Recall and quality measurement (F-measure). The results showed that the model based on support vector machine (SVM) performance is 97.25%, followed by the creation of a Redial Basis Function (RBF) is 96.80% and the final model based on Multilayer Perceptron (MLP) is 96.09%, respectively.
    URI
    http://repository.rmutr.ac.th/123456789/1037
    http://localhost:8080/xmlui/handle/123456789/1037
    Collections
    • บทความ (Article)

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV