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The purpose of this project'is to introduce the new modified Jarratt method
to find the approximate solution of an ordinary differential equation with an initial condition.
Also, some numerical examples with initial conditions are given to show the properties of
the iteration method. The results of absolute errors are compared with Newton, Euler,
Runge-Kutta and Picard iteration methods. Finally, the presented method, namely the new
modified Jarratt method, is highlichted as one of the effective and efficient ways in solving

different type of the problem.
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CHAPTER 1

INTRODUCTION

Solving nonlinear equations is one of the most important problems in nu-
merical analysis. In this study, the iteration methods are considered for finding a

solution z* of a nonlinear equation
F(z).= 0, (1.1)
where F': I C R — R is a scalar function for an open interval I.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic sys-
tems are mathematically modeled by difference or differential equations and their
solutions usually represent the states of the systems. For the sake of simplicity,
assume that a time-invariant system is driven by the equation x = Q(x) for some
suitable operator (), where % is the state. Then the equilibrium states are deter-
mined by solving equation (1.1). Similar equations are used in the case of discrete

systems.

The unknowns of engineering equations can be functions (difference, dif-
ferential and integral equations), veetors: (systems of linear_or nonlinear algebraic
equations) or real or complex numbers (single algebrai¢ equations with single un-
knowns). Except in special-cases, the - most commonly used solution methods are
iterative when starting from one or several dnitial approximations, a sequence is
constructed that converges to a solution of the equation. Iteration methods are
also applied for solving optimization problems. In such cases, the iteration se-
quences converge to an optimal solution of the problem at hand. Since all of these

methods have the same recursive structure, they can be introduced and discussed



in a general framework. Many authors have developed high order methods for gen-
erating a sequence approx- imating x*. A survey of such results can be found in

[1, and the references there] (see also [2-11]).

The natural generalization of the Newton method is to apply a multipoint
scheme. Suppose that we know the analytic expressions of F(z,), F'(z,) and
F'(z,)! at a recurrent step , for each n > 0. In order to increase the order
of convergence and to avoid the computation of the second Frechet-derivative, we
can add one more evaluation of F(¢iz, + e2y,) or F'(ci1x, + coyy), where ¢; and co
are real constants that are independent of z,, and y,, whereas y,, is generated by
a Newton-step. A two-point scheme for functions of one variable was found and

developed by Ostrowski [11].



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters.

Definition 2.1. local convergence, assume z* exists, it is shown that there is a

neighborhood about x* such that the iterates converge to x*

Definition 2.2. semilocal convergence, for a particular choice of initial values,

the iterates converge to'a solution x*

Definition 2.3. Let L < 0,My > 0,M > 0, N < Oandn > 0 be given constants.

Define the polynomials on [0, +00) for some a > 0 by

fi(t) = (L4 Mn)Mnt + A Mya(a+ 2)n — 2,

g(t) = M1+ Mn)Mt*+ [AMoa(1 + @) = M(1+ Mn) Mt — 4Moa,

Ma?n  13Ln?
2 108

2Nan-. 2aMn
=1
g IM 11 3 ’

Ma? 0 A3 2Na| | | 20
=Mon(1 2
a1 (t) on(1+a)t +( R e N g [ —F
(Ma2 18Ln?" - 2N~ 2aM )
e F M077 o

2 + 108 S 9M > 3
Moreover, define a scalar ¢g by
[Ma2 " 13Ly3 oI 2éV]\(;77 3 2aé\4n]

P BLLT S A
R

The polynomials fi, g, g1 have unique positive roots denoted by ¢y, ¢, and ¢
(given in an explicit form), respectively, by the Descartes rule of signs. Moreover,

assume
M(1+ Mn) .

MO 77"’ 9

<1 (2.2)



and

Mao?n  13Ln*>  2Nan 2aM7]<

1 .
2 - 108 IM 3 (23)

Under the conditions (2.2)), (5.7), respectively,
¢0 > 07
and the polynomial h; has a unique positive root ¢, .

Set ¢ = min{dp,, ¢, , ¢y, Gg» 1}. Furthermore, assume

Po > ¢1. (2.4)

If ¢y = 1, then assume that (2.4) holds as a strict inequality. From now on

(2.2) — (2.4) constitute the (C) conditions.

Theorem 2.4. [6] Let F : D C X — Y be thrice differentiable. Assume that

there exist xg € D, L > 0,M >0, N >0 and n >0 such that

F=(zo) € L(V, &), (2.5)
1= (w0) Ezo) | <, (2.6)
1= o) EX (o)l A (2.7)
1 (o) (@) o< IV, (2.8)
127 (o) (F () = F" ()l < Lllx — ylf (2.9)

for each x,y €.D, :
M(1+6]\]\;2 +%]\52>§ (5% (2.10)
ho=Kn <0.46568 (2.11)

and

Ul(xg,v*) ={z € X, ||z — 20| <v*} C D, (2.12)

where v* and v** are the zeros of functions

K
g(t) = 752 —t+n (2.13)



given by
Vv=——n v=— (2.14)

Then the following hold:

(1) The scalar sequences {v,} and {w,} given by

Wy = Up — g_l(vn)g(vn)a

by, = g_l(vn)(g’(vn b %(wn - Un)) - 9,<Un))v (2'15)

| Unt1 = Wn — %bn(l - %bn)(wn — V)

for each n > 0 are non-decreasing and converge to their common limit v*,
so that

Un S W, S Un+1 S Wn41 (216)

(2) The sequences {x,} and {y,} generated by (JM) are well defined, remain in
U(xg,v*) for all n < 0 and converge to a unique solution x* € U(xg,v*) of the
equation F(x) = 0, which is the unique solution of the equation F(x) = 0 €

U(xg,v*). Moreover, the following estimates hold for all n < 0:

98 S = v,) (2.17)
BN s Wl (U, (2.18)
I | =i TIPS (2.19)

A= 07502

1= g (VB9

(2.20)

H$n —x*H @ ok

where

*

9:

2.21
(221)

Remark 2.5. The bounds of Theorem[2:4] can be improved under the same hypothe-

ses and computational cost in two cases as follows.
Case 1. Define a function g¢ by

M,
go(t) = 7%2 —t 4. (2.22)



In view of (2.0), there exists My € [0, M] such that
17 (20) (' (x) — F'(wo)) | < Mollz — o], (2.23)

for all z € D. We can find upper bounds on the norms ||F~!(zq)F’(x¢)|| using Mo,

which is actually needed, and not K used in [4]. Note that
My < K (2.24)

and K/M, can be arbitrarily large [1-3]. Using (2.23), it follows that, for any

x € Ul(xg,v*),
1 (0) (' (x) = F'(wo))|| < Mol = wo|| < Kllw — ol < Kv" <1, (2.25)

It follows from (2.25) and the Banach lemma on invertible operators [1] that

| F'(x) " F'(z0)]| exists and

1
F~Hz)F'(z0)]] < : 2.26
| F~ (@) F( o)||_1—Mo||x—l“0|| (2.26)
We can use (2:25) instead of the-less precise one used in [4]:
T e ot (2.27)
=N AK ||z Aol

This suggests that more precise scalar majorizing sequences {o, },{w, } can be used
and they are‘defined as follows for initial iterates 0, = 0,w; =:

(
Wy = Uy — g()_l(vn)g(@n%

o
3
I
>

, ¢, GoY=-90" W) g (T - 2@, )t (@), (2.28)

L En—&-l N wn £ %Bn(l — ggn)(mn — En)

A simple induction argument shows that; if My < K, then
Uy < Up, (2.29)

W, < Wy, (2.30)

Wy, — Uy < Wy, — U, (2.31)



Upi1 — Wy < Vpyp1 — Wy (2.32)
and
< ¥, (2.33)
where

Case 2. In view of the 243:;-_:_5-;55;_ for ||F(xp11)| obtained in Theorem
L4 ]

2.1 in [4] and (2.29),{t,}, {s.} given in (3.9) and (3.10) are also even more precise
a_'l_':‘v‘_l‘_'h

. .. e iy —
majorizing sequences for {x,} and {y,}. Th

AT AL T

then we can produce a new semilocal convergence
) PILLLCATPINN 4 (3
] F_ﬁ"ﬂ;'." *u‘#,e_ﬁ'?‘j:g»,"‘!; 5 coD

7

erefore, if they converge under certain

T

L [1E€0Tre
W

A

T

ne
<



CHAPTER III

EXISTING METHODS

There is no ambiguity that the quadratically convergent Newton method
(NM) is one of the best root finding methods based on two evaluations of function

for approximating the solution of a nonlinear equation F(z) = 0 and is given as

Let an iterative method be of the form
Tpi1 = F(x,), k=0,1,2,3,...

here x,, is an approximation to the zero a and F' is an iteration function. The
iterative method starts with an initial guess xy and at every step we use only the

last known approximate.

The classical Newton’s-method or one-step of Newton’s method is well-

known,

~ = F(:En)F_l(xn),

1
where F1(x,) denotes )

The double-Newton’s method or two-step of Newton’s-method [1] is consid-

ered,

T xn—F(:I;n)F“l(xn),

Ty o — Yo — F(yn>F_1(yn)'

In 1969, The Jarratt method(JM) [0], which has fourth-order convergence,



is given by

2
Yn = Tp — gp(rn)Fil(Tn)a

- 3F/(yn) + F,(xn)
Ti(wn) = 6F(y) — 2F' (x,)

Tpy1 = Ty = Jp(,)Fz,)F Y (xy,).

In 2008, Wang et al. [I4] improved the Jarratt method as follows:

2
Yn = Tp — gF(mn)Fil(xn)v

8P + F(x)
o) = Gy~ 27 (r,)

2y = Tp — Jp(@,)F(2,) F 7 (2)

. VAo M (o47).

In 2009, Wang et al. [I4] improved the Jarratt method as follows:

b = )BT (a),
3F(y) + F' ()
8L us ) =~ 2P4(¢ )
240 @l (v,))
SEpr LS Uny)
Lt Y= F(yn)F_l(yn)'

The Jarratt method(JM)-{1, 4], which has fourth-order local convergence
analysis , is given by
Yni=ZLpn — F(xn)F_l(xn)a
2
o = &) {F’ (w‘n At e x)) - F’(xn)] . (3.34)
3 3
Tp4+1 = Yn — Zzn (I - Zzn) (yn - xn)

for each n > 0. The fourth order of (JM) is the same as that of a two-step Newton

method [I}, 4]. But the computational cost is less than that of Newton’s method.



CHAPTER IV

CONVERGENCE ANALYSIS

The new method is proposed with a fifth-order convergence. To consider

the iteration scheme, we have

Yn =" Ip— F(xn)F_:l(zn)a
EE - - F(yn>F_1(yn)v (4.35)

Tpiy sl x \F~(2,)
which is the triple-Newton’s method.

Theorem 4.6. Let x* be ‘a simple zero of adequately differentiable function F :
I C R — R for an open interval I. If xy is adequately close to x*, then the new
method defined by 4.3 is of fifth-order and satisfies the error equation

1 9
Cni1 = Z€n+1—66721—(70203—6C§+C4)€i+(40203—4034—80;1—802203)624‘0(62),

1
where e, = x, —at and Ck = EF(]’“) (@) F 7 (zF).

Proof Using Taylor expansion, we can get
Flom = F(3)jen - Cse + Cae2 4 06E5)] (4.36)

and

F'(25) EA )L 8520564+ 3C5e2 1 O(e3)]. (4.37)
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Dividing the new two expansions (4.36) and (4.37) on each other, gives us

F(z,)F Y (z,) =

F(yn)

F/(yn) =

F<yn)F_l(yn) =

F'(z,) =

F(Zn)Fil(Zn) &

en — Coe2 +2(C3 — Cy)ed
+(7C,C3 — 405 +Cy)et + O(ed) (4.38)
F'(2")[Caep — 2(0F — Cy)e;,
+Cet —4C5(C5 = C3)e? 4+ O(eb)] (4.39)
F'(2%)[1 +2C3e2 — 4Cy(C3 — C3)e? + 3C3Cset
—12C,C5(C3 = Cs)ed+ O(el)] (4.40)
Coe? — 2(C3 — O)ed + (O3 — 2C3)er + (8C3 — 4C5)(C3 — Cs)e?

n

+0(€9) (4.41)
F’(.if*)[—('?CQCg =i 603 35 0'4)6;41

F,(I*)[—4(7OQC3 — 603 i 04)62

+5(4C,C3 — 403 +8Cy = 8C3C3)er + O(e)] (4.43)
1 9 o 3

N . 4.44
4en 16677, + O(en) ( )

From (4.38-4.44), we obtain

€n+1

1 9
= Z—l@n = 1—662 =T (70203 = 603 5= 04)6;11
(46505 2405 £ BCH—8C:C3) e’ £0(ef) (4.45)

This means the method defined by (4.35) areof fifth-order.” That completes the

proof.



CHAPTER V

SEMILOCAL CONVERGENCE ANALYSIS

The semilocal convergence of Jarratt method using recurrent functions.

Lemma 5.7. Under the (C) conditions, choose
¢ € [do, 1] if 1 #1 and ¢ € [¢o,1) if o1 = 1. (5.46)
Then the scalar sequences {s,}, {ta} given by

to = 0, So =1
M +-M(sy, —t)(8n — ta)?

A
1 M(t,1 —8,)% 13L(s, —t,)*
Sntl = et T T { 2 T (5.47)
NM(S’H 4 tn)4 M?’(S” i’ t”)4
9(1 = Mt,) ' 3(1= Myt,)?
are non-decreasing, bounded from above by
Q
A GIE 5.48
( s ¢> 1) (5.48)

and converge.to their unique-least upper bound¢* € [0, t*"]. Moreover, the following

estimate holds:

0 S gt tn-l—l S ¢(Sn =~ tn); <549)
where
== M1+ Mn)n
- 2

Proof. We show, using induction on k, that

o< MO+ M(s, — tk))gsk —t)

< TTRYAN (5.50)
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and

0 - 1 Moﬂ(s . )—l—E(s o )3+NM(sk—tk)3 M3 (s), — tg)?
= 1= Moty | 2 VM T q0s R 9(1 — Moty)  3(1 — Myty)?
< ¢ (5.51)

(5.49) — (5.51)) hold for all k& < n.

sp—th < P(sp—1 —tk

g1 <

'_;— .
3 S ICCLCCAOPIINNTA (s,
-1 0501~ -1 F-0

or

or



14

and

NM(Sk — tk)g o NM(l — Motk)(sk — tk)s

9(1 — Mot) 9(1 — Moty,)?
NM Sk — tk ?
= —(1— Myt _— —1
g ¢ of) (1—Motk) (5% = )
C 2NM L 2Na
S a2 Tg Ve T e = gy Sk T k),
MS(Sk — tk)g o MB(Sk -3 tk) (Sk — tk)g
3(1 — Mot)2 5 (1 — Moty)?
- M3( t)2a_2Moz( t)
S ks = TS k)
Hence, instead of (5.51]), we can show
1 Ma? 13L . 2N« 2M
0 < — ) sk — t1)° —t —t
S T | 2k W gk — 07+ gy (e =t =g (o — )
< 4 (5.52)

The estimate (5.50) can be written as
M (L + MeFn)o*n < 2a(1 — Myty,)*

or

M (1 +Mo¥n)dtn < 20+ 2a M2 — AMyaty,.
n)e-n 0lk

So, we can show, instead of (5.50);
M4 MéEn)¢Fn + 4Moat;, < 2a

or

1— ¢
li~o

The estimate (5.5:3)cmotivates us‘to define-polynomialsf, on [0,1) (for ¢ = t) by

M (1 +Mekn)¢*n + 4Mya {n +am ( ) + ¢>’“‘177] —2a <0. (5.53)

L -tk
fr(t) = M(1+M¢kn)tkn+4M00ﬂ7 {1+a<1—t)+tkl} _9g

k
; ) - tk—l} n—2a (5.54)

= Mthn + M*n*t* + 4Myo [1 + « ( :

or, since t? < t for t € [0, 1], define the polynomials f;, on [0,1) by

tk
fe(t) = Mthn + M**t* + 4Mya [1 +a <ﬁ> + t’“‘l} n—2a (5.55)



We need a relationship between two consecutive polynomials fj :

ikl

1—-1

fena(t) = Mty 4+ M2 + 4Mopo [1 +a (

= fult) +g(t)t" ",

where ¢ and its unique positive root ¢, € [0,1) are given in Definition 2.3. The

estimate (0.53)) is true if

fu(9) <0
or if

Si(¢) <0,
since by (5.50) we have

fe(®) = f1(9)

But (5.58) is true by the definition of ¢, and (5.7).Define

fosl@)=lim_ fi(0)

Then we also have

Joo(9) = lim ) fi(@)="lim \f1(4) < lim 0 =0.

o > @

This completes the induction for (5.50). The estimate (5.52) is true if

M ég®n| | § 130 D™ 2V & 2aM
- =1 0"n/< o(Ts Moty
5 +108(¢77)+9M¢77+ 3 9" /< o olk+1)
or
MORGFEPSIZES [ 3 2Ny~ 20 M,
6 P A G R
T ¢k¢+1
The estimate (5.62)) motivates us to define polynomials Ay on [0, 1) by
Ma? 13L 2N« 20M
hi(t) = ¢ B¢k ¢ ¢
) = 5t g gyt

1_tk'+1
+ oM, {1—#04( T3 )—l—tk]n—qﬁ.

15

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

) Hk} 0= 20+ fult) = fult)

(5.56)
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We need a relationship between two consecutive polynomials hy :

hita (t) = MTa2tk+177 %n%kﬂ ?V_Matkﬂn_i_ %tkﬂn
+ oMy {1 + <1 ;_tk;rz) + tk+1] n—¢— M20z2tk77 B %ngtk B %tkn
— %]V—Matkn — oMy [1 + o (1 ;fkt“) + tk} + ¢+ hi(t)

and so

Sria(t) = hy(t) + g1 (t)t"n, (5.64)

where g; and the unique positive root ¢g; are given in Definition [2.3. The estimate

(5.62) is true if

hi(¢) <0 (5.65)

or, if
hi(¢) <0 (5.66)
(@) = ha (). (5.67)

But (5.66)) istrue by the definition of ¢, and (5.7). Define a function h, on [0, 1)
by

Bld) = it o) (5.68)
Then we have
hoo (P) = kh_r)n hi(¢) = klim hi(¢) < khi)n fra- 0. (5.69)

This completes the induction for (5.7) — (5.51). It follews that the sequences {s,}
and {t,} are non-decreasing; beunded from above by t** given in a closed form by
(5.48) and converge to their uniquetleast upper bound ¢* € [0,¢**]. This completes

the proof. O

Lemma 5.8. [1, /] Under the hypotheses of Lemma 5.7, further assume
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(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)
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which implies the second equation in (5.76). We have the estimate

M 13L NM M3
M [ M(s,, —t,)2\> 13L
< — (S—) i(sm - tm)4
2 \ 2(1 — Mot,,) 108
NM M3
T o= ) A T A )
M? (s —tm)t 13L (Sp — tm)t 2
<= 1 — Myt,,
= 8 (1— Myt)? * 108 (1— Motm)2( otm)
NM(s,, —t,)* M3 (Sp — tm)*
9(1 — Mot )? 3 (1 — Mot,,)?
- b(Sp — tm)* 7
= (1 — Myt,,)?

that is, we have
A b(Spm — tim)*
Smi1 — X .
TR0N SRR (9 — Mot

Instead of showing (5.77), we can show

BER. £ tm)4 3 4
< q°(Sy, — tm 5.79
(12 Myt 2@ = Myt 1) ( ) (5:79)
or
9 < g2 (5.80)
(W NG AN
or
tm+1 S Po- (581)
By the hypothesis (5.75)), we have
£ < Po. (5.82)
Assume
We also have
; M (8 — tm)?
m —Sm = T AN
. 2(1 — Mot,,)
M
< s — ) = plsm — tm) (5.84)
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We get in turn

tmpr < (Smo—tm) + (b = Sm1) - 4 (f1 = 50) + 50 + D5 — tn)?
< n+ 5(6177)4 +((5m —tm)* + (Sm-1 = tm-1)* + -+ + (50 — t0)?)
< n+ é(qn)“m + S (@)™ + (@)@ )
= 4+ é(qn)“m + %(((qn)é)w (@) e (@)D )
< é %((qn)g(m“’ + (@)™ A+ (qn)® + )
< et (HI ) = <m (5.85)
which completes the induction for (5.81). This completes the proof. [

Theorem 5.9. Under the hypotheses (2.2) — (5.47) and (5.65), further assume that
the hypotheses of Lemma 5.7 hold and

U(z,t) S D (5.86)

Then the sequences {xn} and {y,} generated by (JM) are well defined, remain in

U(x,t*) for alln < 0 and converge to a unigue solution x* of the equation F(x) =0

in U(x,t*). Moreover, the following cstimates hold:

Nn = Tl S Spm
W~ IS AL S 5,
INEp B — 1,
g~z

Furthermore, under-the hypotheses=af Proposition5.8 , the estimates (5.70) also

hold. Finally, if R > t* such-that
U(x,R) CD

and
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then the solution x* is unique in U(x, R).

#
| )
¥
o ||
| neer
e, )
=

(...‘
R
~D-
4
‘.
b =

& WLl
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