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CHAPTER I

INTRODUCTION

1.1 Background of research

The fixed-point iteration process for nonlinear operators in Hilbert spaces

and Banach spaces including Mann, Halpern and Isikawa iterations process have

been studied extensively by many authors to approximate fixed point of various

classes of operators in both Hilbert spaces and Banach spaces. In 1952, Mann [42]

defined Mann iteration in a matrix formulation. In 1967, Halpern [17] introduced

the new innovation iteration process which resemble in Mann’s iteration.

In 1994, equilibrium problems were introduced by Blum and Oettli [5] and

by Noor and Oettli [47] as optimization problems and generalizations of variational

inequalities. The equilibrium problem theory provides a novel and united treatment

of a wide class of problems which arise in finance, economics, ecology, elasticity,

transportation, network and optimization. This theory has had a great impact and

influence in the development of several branches of pure and applied sciences.

1.2 Objective

The objectives of research project

1.2.1 We construct an iterative scheme of nonexpansive mappings in Hilbert

spaces and we prove strong convergence theorems.

1.2.2 Apply iterative scheme to prove strong convergence theorems and

reduce condition to other theorems.
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1.3 Benefits of research

The benefits of research project

1.3.1. To gain the method for construct an iterative scheme of nonexpansive

mappings in Hilbert spaces.

1.3.2. To apply iterative scheme to prove strong convergence theorems and

reduce condition to other theorems.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters.

2.1 Basic results.

Definition 2.1. Let X be a linear space over the field K (R or C). A function

‖ · ‖ : X −→ R is said to be a norm on X if it satisfies the following conditions:

(1) ‖x‖ ≥ 0,∀x ∈ X;

(2) ‖x‖ = 0 ⇔ x = 0;

(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ X;

(4) ‖αx‖ = |α|‖x‖,∀x ∈ X and ∀α ∈ K.

Definition 2.2. Let (X, ‖ · ‖) be a normed space.

(1) A sequence {xn} ⊂ X is said to converge strongly in X if there exists

x ∈ X such that lim
n−→∞

‖xn−x‖ = 0. That is, if for any ε > 0 there exists a positive

integer N such that ‖xn−x‖ < ε,∀n ≥ N. We often write lim
n−→∞

xn = x or xn −→ x

to mean that x is the limit of the sequence {xn}.

(2) A sequence {xn} ⊂ X is said to be a Cauchy sequence if for any ε > 0

there exists a positive integer N such that ‖xm − xn‖ < ε,∀ m, n ≥ N . That is,

{xn} is a Cauchy sequence in X if and only if ‖xm − xn‖ −→ 0 as m, n −→∞.

Definition 2.3. A normed space X is called complete if every Cauchy sequence in

X converges to an element in X.

Definition 2.4. An element x ∈ C is said to be a fixed point of a mapping S :

C −→ C proved Sx = x. The set of all fixed point of S is denoted by F (S) = {x ∈
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C : Sx = x}.

Definition 2.5. Let F and X be linear spaces over the field K.

(1) A mapping T : F −→ X is called a linear operator if T (x+y) = Tx+Ty

and T (αx) = αTx,∀x, y ∈ F, and ∀α ∈ K.

(2) A mapping T : F −→ K is called a linear functional on F if T is a linear

operator.

Definition 2.6. Let F and X be normed spaces over the field K and T : X −→ F

a linear operator. T is said to be bounded on X, if there exists a real number M > 0

such that ‖T (x)‖ ≤ M‖x‖,∀x ∈ X.

Definition 2.7. Sequence {xn}∞n=1 in a normed linear space X is said to be a

bounded sequence if there exists M > 0; such that ‖xn‖ ≤ M, ∀n ∈ N.

Definition 2.8. Let F and X be normed spaces over the field K, T : F −→ X

an operator and c ∈ F . We say that T is continuous at c if for every ε > 0 there

exists δ > 0 such that ‖T (x)− T (c)‖ < ε whenever ‖x− c‖ < δ and x ∈ F . If T is

continuous at each x ∈ F , then T is said to be continuous on F.

Definition 2.9. A subset C of a normed linear space X is said to be convex subset

in X if λx + (1− λ)y ∈ C for each x, y ∈ C and for each scalar λ ∈ [0, 1].

2.2 Inner product spaces

Definition 2.10. The real-valued function of two variables 〈·, ·〉 : X ×X −→ R is

called inner product on a real vector space X if it satisfies the following conditions:

1) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y, z ∈ X and all

real number α and β;

2) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X; and

3) 〈x, x〉 ≥ 0 for each x ∈ X and 〈x, x〉 = 0 if and only if x = 0.

A real inner product space is a real vector space equipped with an inner product.
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Remark 2.11. Every inner product space is a normed space with respect to the

norm ‖x‖ = |〈x, x〉| 12 , x, y ∈ X.

Definition 2.12. A Hilbert space is an inner product space which is complete

under the norm induced by its inner product.

Definition 2.13. A sequence {xn} in a Hilbert space H is said to converge weakly

to a point x in H if limn−→∞〈xn, y〉 = 〈x, y〉 for all y ∈ H. The notation xn ⇀ x is

sometimes used to denote this kind of convergence.

Definition 2.14. The metric (nearest point) projection PC from a Hilbert space

H to a closed convex subset C of H is defined as follows: Given x ∈ H, PCx is the

only point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Lemma 2.15. Let H be a real Hilbert space, C a closed convex subset of H. Given

x ∈ H and z ∈ C. Then

1) z = PCx if and only if there holds the inequality

〈x− z, z − y〉 ≥ 0,∀y ∈ C.

2) ‖PCx− PCy‖ ≤ ‖x− y‖, ∀x, y ∈ H.

3) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2

2.3 Hilbert spaces

Definition 2.16. The real-value function of two variables 〈·, ·〉 : X ×X −→ R is

called inner product on a real vector space X if it satisfies the following conditions:

(1) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ X and all real number α

and β;

(2) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X; and
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(3) 〈x, x〉 ≥ 0 for each x ∈ X and 〈x, x〉 = 0 if and only if x = 0. A real

inner product space is a real vector space equipped with an inner product.

Definition 2.17. A Hilbert spaces is an inner product space which is complete

under the norm induced by its inner product.

Definition 2.18. The metric (nearest point) projection PC from a Hilbert space

H to a closed convex subset C of H is defined as follows: Given x ∈ H, PCx is the

only point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Definition 2.19. For every point x ∈ H, there exists a unique nearest point in C,

denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a firmly

nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H (2.1)

Definition 2.20. Let X be a normed space, {xn} ⊂ X and f : X −→ (−∞,∞].

Then f is said to be

1) lower semicontinuous on X if for any x0 ∈ X,

f(x0) 6 lim infn−→∞ f(xn) whenever xn −→ x0.

2) upper semi (or hemi) continuous on X if for any x0 ∈ X,

lim supn−→∞ f(xn) 6 f(x0) whenever xn −→ x0.

3) weakly lower semicontinuous on X if for any x0 ∈ X,

f(x0) 6 lim infn−→∞ f(xn) whenever xn ⇀ x0.

4) weakly upper semicontinuous on X if for any x0 ∈ X,

lim supn−→∞ f(xn) 6 f(x0) whenever xn ⇀ x0.
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Definition 2.21. Let X be a normed space. A mapping T : X −→ X is said to

be Lipschitzian if there exists a constant k ≥ 0 such that for all x, y ∈ X,

‖Tx− Ty‖ ≤ k‖x− y‖. (2.2)

The smallest number k for which (2.4) holds is called the Lipschitz constant of T

and T is called a contraction (nonexpansive mapping) if k ∈ (0, 1) (k=1).

Definition 2.22. An element x ∈ X is said to be

1) a fixed point of a mapping T : X −→ X provided Tx = x.

2) a common fixed point of two mappings S, T : X −→ X

provided Sx = x = Tx. The set of all fixed points of T is denoted by F (T ).

Lemma 2.23. Let H be a real Hilbert space, C a closed convex subset of H. Given

x ∈ H and y ∈ C. Then y = PCx if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0,∀z ∈ C.

Definition 2.24. A Linear space or vector space X over the field K (The real field

R or the complex field C) is a set X together with an internal binary operation

”+” called addition and a scalar multiplication carrying (α, x) in K×X to αx in

X satisfying the following for all x, y, z ∈ X and α, β ∈ K:

1) x + y = y + x,

2) (x + y) + z = x + (y + z),

3) there exists an element 0 ∈ X called the zero vector of X such

that x + 0 = x for all x ∈ X,

4) for every element x ∈ X, there exists an element −x ∈ X

called the additive inverse or the negative of x such x + (−x) = 0,

5) α(x + y) = αx + αy,

6) (α + β)x = αx + βx,

7) (αβ)x = α(βx),

8) 1 · x = x.

The elements of a vector space X are called vector, and the elements of K called
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scalars. In the sequel, unless otherwise stated, X denotes a linear space over field

R.

Definition 2.25. A subset C of a linear space X is said to be a convex set in X

if λx + (1− λ)y ∈ C for each x, y ∈ C and for each scalar λ ∈ [0, 1].

Definition 2.26. Let X and Y be normed spaces over the field K, T : X −→ Y

an operator and x0 ∈ X. We say that T is continuous at x0 if for every ε > 0 there

exists δ > 0 such that ‖T (x) − T (x0)‖ < ε whenever ‖x − x0‖ < δ and x ∈ X. If

T is continuous at each x ∈ X, then T is said to be continuous on X.

Remark 2.27. A linear operator on a normed space is bounded if and only if it is

continuous. We now denote the set of all continuous (or bounded) linear operators

of X into Y by L(X, Y ).

Definition 2.28. Let X be a normed space. A mapping T : X −→ X is said to

be Lipschitzian if there exists a constant k ≥ 0 such that for all x, y ∈ X,

‖Tx− Ty‖ ≤ k‖x− y‖. (2.3)

The smallest number k for which (2.4) holds is called the Lipschitz constant of T

and T is called a contraction (nonexpansive mapping) if k ∈ (0, 1) (k=1).

2.4 Normed spaces and Banach spaces

Definition 2.29. [10] Let X be a linear space over the field K (R or C). A function

‖ · ‖ : X −→ K is said to be a norm on X if it satisfies the following conditions:

1) ‖x‖ ≥ 0,∀x ∈ X;

2) ‖x‖ = 0 ⇔ x = 0;

3) ‖x + y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ E;

4) ‖αx‖ = |α|‖x‖,∀x ∈ E and ∀α ∈ K.

We use the notation ‖ · ‖ for norm.



9

Definition 2.30. [10] Let (X, ‖ · ‖) be a normed space.

1) A sequence {xn} ⊂ X is said to converge strongly in X if

there exists x ∈ X such that lim
n−→∞

‖xn−x‖ = 0. That is, if for any ε > 0 there exists

a positive integer N such that ‖xn − x‖ < ε,∀n ≥ N. We often write lim
n−→∞

xn = x

or xn −→ x to mean that x is the limit of the sequence {xn}.

2) A sequence {xn} ⊂ X is said to be a Cauchy sequence if for

any ε > 0 there exists a positive integer N such that ‖xm − xn‖ < ε,∀ m, n ≥ N .

That is, {xn} is a Cauchy sequence in X if and only if ‖xm−xn‖ −→ 0 as m, n −→

∞.

3) A sequence {xn} ⊂ X is said to be a bounded sequence if

there exists M > 0 such that ‖xn‖ 6 M, ∀n ∈ N.

Definition 2.31. [10] A normed space X is called to be complete if every Cauchy

sequence in X converges to an element in X.

Definition 2.32. [10] A complete normed linear space over field K is called a

Banach space over K

Definition 2.33. [10] Let X and Y be linear spaces over the field K.

1) A mapping T : X −→ Y is called a linear operator if T (x +

y) = Tx + Ty and T (αx) = αTx, ∀x, y ∈ X, and ∀α ∈ K.

2) A mapping T : X −→ K is called a linear functional on X

if T is a linear operator.

Definition 2.34. [10] Let X and Y be normed spaces over the field K and T :

X −→ Y a linear operator. T is said to be bounded on X, if there exists a real

number M > 0 such that ‖T (x)‖ ≤ M‖x‖,∀x ∈ X.

Definition 2.35. [10] Let X and Y be normed spaces over the field K, T : X −→ Y

an operator and x0 ∈ X. We say that T is continuous at x0 if for every ε > 0 there

exists δ > 0 such that ‖T (x) − T (x0)‖ < ε whenever ‖x − x0‖ < δ and x ∈ X. If

T is continuous at each x ∈ X, then T is said to be continuous on X.
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Definition 2.36. [11] Let X be a normed space, {xn} ⊂ X and f : X −→

(−∞,∞]. Then f is said to be

1) lower semicontinuous on X if for any x0 ∈ X,

f(x0) 6 lim infn−→∞ f(xn) whenever xn −→ x0.

2) upper semi (or hemi) continuous on X if for any x0 ∈ X,

lim supn−→∞ f(xn) 6 f(x0) whenever xn −→ x0.

3) weakly lower semicontinuous on X if for any x0 ∈ X,

f(x0) 6 lim infn−→∞ f(xn) whenever xn ⇀ x0.

4) weakly upper semicontinuous on X if for any x0 ∈ X,

lim supn−→∞ f(xn) 6 f(x0) whenever xn ⇀ x0.

Definition 2.37. [10] Let X be a normed space. A mapping T : X −→ X is said

to be Lipschitzian if there exists a constant k ≥ 0 such that for all x, y ∈ X,

‖Tx− Ty‖ ≤ k‖x− y‖. (2.4)

The smallest number k for which (2.4) holds is called the Lipschitz constant of T

and T is called a contraction (nonexpansive mapping) if k ∈ (0, 1) (k=1).

Definition 2.38. [10] An element x ∈ X is said to be

1) a fixed point of a mapping T : X −→ X provided Tx = x.

2) a common fixed point of two mappings S, T : X −→ X

provided Sx = x = Tx. The set of all fixed points of T is denoted by F (T ).

Theorem 2.39. (Banach contraction principle, [10]) Every contraction mapping

T defined on a Banach space X into itself has a unique fixed point x∗ ∈ X.

Definition 2.40. [10] Let X be a normed space. Then the set of all bounded linear

functionals on X is called a dual space of X and is denoted by X∗.

Definition 2.41. [10] A normed space X is said to be reflexive if the canonical

mapping G : X −→ X∗∗ (i.e. G(x) = gx for all x ∈ X where gx(f) = f(x) for all

f ∈ X∗) is surjective.
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Definition 2.42. [11] A Banach space X is said to be strictly convex if ‖x+y
2
‖ < 1

for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y

Definition 2.43. [12] A Banach space X is said to be uniformly convex if for each

0 < ε 6 2, there is δ > 0 such that ∀x, y ∈ X, the condition ‖x‖ = ‖y‖ = 1, and

‖x− y‖ > ε imply ‖x+y
2
‖ 6 1− δ.

Theorem 2.44. [12] Let X be a Banach space. Then X is uniformly convex if and

only if δ(ε) > 0 for all ε ∈ (0, 2].

Definition 2.45. [11] Let X be a Banach space and S = {x ∈ X : ‖x‖ = 1}.

Then X is said to be smooth if the limit

lim
t−→0

‖x + ty‖ − ‖x‖
t

(2.5)

exists for all x, y ∈ S. It is also said to be uniformly smooth if the limit (2.5) is

attained uniformly for x, y ∈ S.

Remark 2.46. [11] 1) X is uniformly convex if and only if X∗ is uniformly smooth.

2) X is smooth if and only if X∗ is strictly convex.

Definition 2.47. [11] Let X∗ be dual space of a Banach space X. The mapping

J : X −→ X∗ defined by

J(x) = {x∗ ∈ X : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}, for all x ∈ X,

is called the duality mapping of X.

Lemma 2.48. [11] Let X be a strictly convex, smooth, and reflexive Banach space,

and let J be the duality mapping from X into X∗. Then J−1 is also single-valued,

one-to-one, and surjective, and it is the duality mapping from X∗ into X.

Lemma 2.49. [13] Let X be a reflexive Banach space and X∗ be strictly convex.

(i) The duality mapping J : X −→ X∗ is single-valued, surjective and bounded.
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(ii) If X and X∗ are locally uniformly convex, then J is a homeomorphism, that

is, J and J−1 are continuous single-valued mappings.

Definition 2.50. [14] Let p be a fixed real number with p ≥ 1. A Banach space X

is said to be p-uniformly convex if there exists a constant c > 0 such that δ(ε) ≥ cεp

for all ε ∈ (0, 2].

Definition 2.51. [11] For each p > 1, the generalized duality mapping Jp : X −→

2X∗
is defined by

Jp(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1} (2.6)

for all x ∈ X.

Remark 2.52. [11] 1) J = J2 is called the normalized duality mapping. If X is a

Hilbert space (the next section), then J = I, where I is the identity mapping.

2) If X is uniformly smooth, then J is uniformly norm-to-norm

continuous on each bounded subset of E.

Definition 2.53. [11] Let S(E) = {x ∈ E : ‖x‖ = 1} denote the unit sphere of a

Banach space E. A Banach space E is said to have

• a Gâteaux differentiable norm (we also say that E is smooth), if the limit

lim
t−→0

‖x + ty‖ − ‖x‖
t

(2.7)

exists for each x, y ∈ S(E);

• a uniformly Gâteaux differentiable norm , if for each y in S(E), the limit (2.7)

is uniformly attained for x ∈ S(E);

• a Fréchet differentiable norm, if for each x ∈ S(E), the limit (2.7) is attained

uniformly for y ∈ S(E);

• a uniformly Fréchet differentiable norm (we also say that E is uniformly

smooth), if the limit (2.7) is attained uniformly for (x, y) ∈ S(E)× S(E).
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Definition 2.54. [11] A Banach space E is said to have Kadec-Klee property if a

sequence {xn} of E satisfying that xn ⇀ x ∈ E and ‖xn‖ −→ ‖x‖, then xn −→ x.

It is known that if E is uniformly convex, then E has the Kadec-Klee prop-

erty.

Definition 2.55. [15] Let X be a smooth Banach space. The function φ : X ×

X −→ R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 (2.8)

for all x, y ∈ X.

Remark 2.56. (1) (‖y‖ − ‖x‖)2 6 φ(y, x) 6 (‖y‖+ ‖x‖)2, for all x, y ∈ X.

(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, for all x, y, z ∈ X.

(3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 6 ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖, for all

x, y ∈ X.

(4) In a Hilbert space H, we have φ(x, y) = ‖x− y‖2 for all x, y ∈ H.

Definition 2.57. [16] Let C be a nonempty closed convex subset of a smooth,

strictly convex, and reflexive Banach space X, for any x ∈ X, there exists a point

x0 ∈ C such that φ(x0, x) = miny∈C φ(y, x). The mapping ΠC : X −→ C defined

by ΠCx = x0 is called the generalized projection.

The following are well-known results.

Lemma 2.58. [17] Let E be a reflexive, strictly convex and smooth Banach space,

let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) 6 φ(y, x)

for all y ∈ C.
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Lemma 2.59. [16] Let C be a nonempty closed convex subset of a smooth Banach

space X, let x ∈ X, and let x0 ∈ C. Then, x0 = ΠCx if and only if 〈x0 − y, Jx−

Jx0〉 > 0 for all y ∈ C.

Lemma 2.60. [4] Let C be a nonempty, closed and convex subset of a Hilbert

space H and let T : C −→ C be a firmly nonexpansive mapping with F (T ) 6= ∅.

Then 〈x− Tx, Tx− z〉 ≥ 0 for all x ∈ C and z ∈ F (T ).

Lemma 2.61. [65] Let T λx = Tx−λµf(Tx), where T : H −→ H is a nonexpansive

mapping from H into itself and f is an η-strongly monotone and k-Lipschitzian

mapping from H into itself. If 0 ≤ λ < 1 and 0 < µ < 2η/k2, then T λ is a

contraction and satisfies

‖T λx− T λy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ H, (2.9)

where τ = 1−
√

1− µ(2η − µk2).

Lemma 2.62. [48] Let {an}, {bn} and δn be sequences of nonnegative real numbers

satisfying the inequality,

an+1 ≤ (1− δn)an + bn, n ≥ 1.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn−→∞ an exists. If in addition, {an}

has a subsequence which converges strongly to zero, then limn−→∞ an −→ 0.

Lemma 2.63. [54] Suppose E is a uniformly convex Banach space and 0 < p ≤

tn ≤ q < 1 for all positive integers n. Also suppose that {xn} and {yn} are

two sequence of E such that lim supn−→∞ ‖xn‖ ≤ r, lim supn−→∞ ‖yn‖ ≤ r and

limn−→∞ ‖tnxn+(1−tn)yn‖ = r hold for some r ≥ 0. Then limn−→∞ ‖xn−yn‖ = 0.

Lemma 2.64. [13] Let C be a nonempty closed convex subset of a real Hilbert

space H and T a nonexpansive mapping from C into itself. If T has a fixed point,

then I − T is demiclosed at zero, where I is the identity mapping of H, that is,

whenever {xn} is a sequence in C weakly converging to some x ∈ C and the sequence

{(I − T )xn} strongly converges to some y, it follows that (I − T )x = y.
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Lemma 2.65. [11] Let C be a nonempty closed convex subset of H. Let F :

C × C −→ R be a bifunction satisfying (A1)-(A4) and let ϕ : C −→ R be a lower

semicontinuous and convex function. For r > 0 and x ∈ H, define a mapping

Tr : H −→ C as follows:

Tr(x) = {z ∈ C : F (z, y) + ϕ(y)− ϕ(z) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

for all x ∈ H. Assume that either (B1) or (B2) holds. Then, the following conclu-

sions hold:

1. For each x ∈ H, Tr(x) 6= ∅.

2. Tr is single-valued;

3. Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx −

Try, x− y〉;

4. F (Tr) = MEP (F, ϕ).

5. MEP (F, ϕ) is closed and convex.

A Banach space E is said to satisfy Opial’s condition if for any sequence

{xn} in E, xn ⇀ x(n →∞) implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,∀y ∈ E with x 6= y.

By [14, Theorem 1], it is well known that if E admits a weakly sequentially con-

tinuous duality mapping, then E satisfies Opial’s condition, and E is smooth.

We need the following lemmas for proving our main results.

Proposition 2.66. ([51]) Let E be a smooth banach space and let C be a nonempty

subset of E. Let Q : E → C be a retraction and let J be the normalized duality

mapping on E. Then the following are equivalent:

(i) Q is sunny and nonexpansive;
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(ii) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉,∀x, y ∈ E;

(iii) 〈x−Qx, J(y −Qx)〉 ≤ 0,∀x ∈ E, y ∈ C.

If Jq is the generalized duality mapping on E then 〈x−Qx, Jq(y −Qx)〉 ≤ 0,∀x ∈

E, y ∈ C is equivalent to this Proposition (see [55]).

Proposition 2.67. ([12, 29, 26]) Let C be a nonempty closed convex subset of a

uniformly convex and uniformly smooth Banach space E and let T be a nonexpansive

mapping of C into itself with F (T ) 6= ∅. Then the set F(T) is a sunny nonexpansive

retract of C.

Lemma 2.68. ([3]) Let C be a nonempty closed convex subset of a smooth Banach

space E. Let QC be a sunny nonexpansive retraction from E onto C and let A be

an accretive operator of C into E. Then, for all λ > 0,

V I(C, A) = F (Q(I − λA)),

where V I(C, A) =
{
x∗ ∈ C : 〈Ax∗, J(x− x∗)〉 ≥ 0,∀x ∈ C

}
.

Lemma 2.69. ([6])Let C be a nonempty bounded closed convex subset of a uni-

formly convex Banach space E and T : C → C be a nonexpansive mapping. If {xn}

is a sequence of C such that xn ⇀ x and xn − Txn → 0 then x is a fixed point of

T .

Lemma 2.70. ([63]) Let r > 0 and let E be a uniformly convex Banach space.

Then, there exists a continuous, strictly increasing and convex function g : [0,∞) →

[0,∞) with g(0) = 0 such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖)

for all x, y ∈ Br := {z ∈ E : ‖z‖ ≤ r} and 0 ≤ λ ≤ 1.

Lemma 2.71. ([27]) Let E be a real smooth and uniformly convex Banach space

and let r > 0. Then there exists a strictly increasing, continuous and convex

function g : [0, 2r] → R such that g(0) = 0 and

g(‖x− y‖) ≤ ‖x‖2 − 2〈x, Jy〉+ ‖y‖2,∀x, y ∈ Br,
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where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.72. ([63]) Let E be a real q-uniformly smooth Banach space, then there

exists a constant cq > 0 such that

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q,∀x, y ∈ E.

In particular, if E is real 2-uniformly smooth Banach space, then there exists a best

smooth constant K > 0 such that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉+ 2K‖y‖2,∀x, y ∈ E.

Lemma 2.73. ([38]) Let E be a real Banach space and J : E → 2E∗
be the

normalized duality mapping. Then, for any x, y ∈ E, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉

for all j(x + y) ∈ J(x + y) with x 6= y.

Lemma 2.74. ([57]) Let {xn} and {yn} be bounded sequences in a Banach space

X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 −

yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.75. ([64]) Assume {an} is a sequence of nonnegative real numbers such

that

an+1 ≤ (1− αn)an + δn, n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 αn = ∞

(2) lim supn−→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn−→∞ an = 0.
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Lemma 2.76. ([52, 56]) Let C be a nonempty, closed and convex subset of a

real q-uniformly smooth Banach space E, L2 : C → E be a κ-Lipschitzian and

η-strongly accretive operator with constants κ, η > 0 and let 0 < µ < ( qη
cqκq )

1
q−1 ,

τ = µ(η− cqµq−1κq

q
), then for t ∈ (0, min{1, 1

τ
}), the mapping S : C → E defined by

S := (I − tµL2) is a contraction with a constant 1− tτ .

Lemma 2.77. ([55]) Let C be a nonempty, closed and convex subset of a real

reflexive and q-uniformly smooth Banach space E which admits a weakly sequentially

continuous generalized duality mapping Jq from E into E*. Let QC be a sunny

nonexpansive retraction from E onto C, V : C → E a k-Lipschitzian and η-strongly

accretive operator with constants k, η > 0. Suppose f : C → E is a L-Lipschitzian

mapping with constant L > 0 and T : C → C a nonexpansive mapping such that

F (T ) 6= ∅. Let 0 < µ < ( qη
cqκq )

1
q−1 and 0 ≤ γL < τ where τ = µ(η− cqµq−1κq

q
). Then

{xt} defined by xt = QC [tγfxt + (I − tµV )Txt] converges strongly to some point

x∗ ∈ F (T ) as t → 0, which is the unique solution of the variational inequality:

〈γfx∗ − µV x∗, Jq(p− x∗)〉 ≤ 0,∀p ∈ F (T ).

Lemma 2.78. ([55]) Let C be a closed convex subset of a smooth Banach space E.

Let C̃ be a nonempty subset of C. Let Q : C → C̃ be a retraction and let J, Jq be

the normalized duality mapping and generalized duality mapping on E, respectively.

Then the following are equivalent:

(i) Q is sunny and nonexpansive;

(ii) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉,∀x, y ∈ E;

(iii) 〈x−Qx, J(y −Qx)〉 ≤ 0,∀x ∈ C, y ∈ C̃;

(iv) 〈x−Qx, Jq(y −Qx)〉 ≤ 0,∀x ∈ C, y ∈ C̃.

Lemma 2.79. ([46]) Let q > 1. Then the following inequality holds:

ab ≤ 1

q
aq +

q − 1

q
b

q
q−1

for arbitrary positive real numbers a, b.



CHAPTER III

METHODS

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. A

mapping T : H −→ H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for any

x, y ∈ H. A mapping f : H −→ H is said to be η-strongly monotone if there exists

constant η > 0 such that 〈fx−fy, x−y〉 ≥ η‖x−y‖2 for any x, y ∈ H. A mapping

f : H −→ H is said to be k-Lipschitzian if there exists a constant k > 0 such that

‖fx− fy‖ ≤ k‖x− y‖ for any x, y ∈ H.

Let D be a subset of a Hilbert space H. Recall that two mappings S, T :

D −→ D are said to satisfy condition (A′) which is given in [39] if there exists

a nondecreasing function f : [0,∞) −→ [0,∞) with f(0) = 0, f(r) > 0 for all

r ∈ (0,∞) such that (1/2)(‖x−Tx‖+ ‖x−Sx‖) ≥ f(d(x, f)) for all x ∈ D, where

d(x,F) = inf{‖x − x∗‖ : x∗ ∈ F = F (T ) ∩ F (S)}. We modify this condition for

three mappings S, T, K : C −→ C as follows:

Three mappings S, T, K : C −→ C where C a subset of H, are said to

satisfy condition (A′′) if there exists a nondecreasing function f : [0,∞) −→ [0,∞)

with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that (1/3)(‖x− Tx‖+ ‖x− Sx‖+

‖x −Kx‖) ≥ f(d(x, f)) for all x ∈ C, where d(x,F ′) = inf{‖x − x∗‖ : x∗ ∈ F ′ =

F (T ) ∩ F (S) ∩ F (K)}. Note that condition (A′′) reduces to condition (A′) when

K = S.

Let f : H −→ H be a nonlinear mapping and C a nonempty closed convex

subset of H. The variational inequality problem with a mapping f on C (V I(C, f)

in short) is formulated as finding a point u∗ ∈ C such that

〈f(u∗), v − u∗〉 ≥ 0, ∀v ∈ C. (2.10)
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The variational inequalities were initially studied by Kinderlehrer and Stampacchia

[41], and ever since have been widely studied. It is well known that the V I(C, f)

is equivalent to the fixed point equation

u∗ = PC(u∗ − µf(u∗)), (2.11)

where PC is the projection from H onto C and µ is an arbitrarily fixed constant.

In fact, when f is an η-strongly monotone and Lipschitzian mapping on C and

µ > 0 small enough, then the mapping defined by the right hand side of (2.11) is

a contraction.

For reducing the complexity of computation caused by the projection PC ,

Yamada [65] proposed an iteration method to solve the variational inequalities

V I(C, f). For arbitrary u ∈ H,

un+1 = Tun − λn+1µf(T (un)), n ≥ 0, (2.12)

where T is a nonexpansive mapping from H into itself, C is the fixed point set

of T , f is an η-strongly monotone and k-Lipschitzian mapping on K, {λn} is a

real sequence in [0, 1), and 0 < µ < 2η/k2. Then Yamada [65] proved that {un}

converges strongly to the unique solution of the V I(C, f) as {λn} satisfies the

following conditions:

1. limn−→∞ λn = 0;

2.
∑∞

n=0 λn = ∞;

3. limn−→∞(λn − λn+1)/λ
2
n+1 = 0.

Based on the idea of iterative process (2.12), recently, Wang [60] discussed

the more general Mann iterative scheme as follows: Let H be a Hilbert space,

T : H −→ H a nonexpansive mapping with F (T ) := {x ∈ H, Tx = x} 6= ∅,

and f : H −→ H an η-strongly monotone and k-Lipschitzian mapping. For any
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x0 ∈ H, {xn} is defined by

xn+1 = anxn + (1− an)T λn+1xn, ∀n ≥ 0, (2.13)

where

T λx = Tx− λµf(Tx), ∀x ∈ H, (2.14)

where {an} ⊂ (0, 1) and {λn} ⊂ [0, 1) with some suitable conditions. Then the

sequence {xn} is shown to converge strongly to a fixed point of T , and the necessary

and sufficient conditions that {xn} converges strongly to a fixed point of T are

obtained.

Theorem I [19]. If C is a compact convex subset of a Hilbert space H, T : C −→ C

is a Lipschitzian pseudo-contractive mapping. For x0 ∈ C, define the sequence {xn}

iteratively by

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, ∀n ≥ 0, (2.15)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 ≤ αn ≤ βn < 1;

(ii) limn−→∞ βn = 0;

(iii)
∑∞

n=1 αnβn = ∞.

Then the sequence {xn} defined by (2.15) converges strongly to a fixed point of T .

Let ϕ : C −→ R be a real-valued function and F : C × C −→ R be an

equilibrium bifunction, i.e., F (u, u) = 0 for each u ∈ C. The mixed equilibrium

problem (for short, MEP ) is to find x∗ ∈ C such that

MEP : F (x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0,∀y ∈ C. (2.16)
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The set of solutions for the problem MEP (2.16) is denoted by MEP (F, ϕ).

Special cases.

(1) If ϕ ≡ 0, then MEP (2.16) reduces to the following classical equilibrium

problem (for short, EP ):

Finding x∗ ∈ C such that F (x∗, y) ≥ 0,∀y ∈ C. (2.17)

The set of solutions for the problem EP (2.17) is denoted by EP (F ).

(2) If ϕ ≡ 0 and F (x, y) = 〈Ax, y−x〉 for all x, y ∈ C, where A is a mapping

from C into H, then MEP (2.16) reduces to the following classical variational

inequality problem (for short V IP ):

Finding x∗ ∈ C such that 〈Ax∗, y − x∗〉 ≥ 0,∀y ∈ C. (2.18)

The set of solutions for the problem V IP (2.18) is denoted by V I(C, A).

(3) If F ≡ 0, then MEP (2.16) becomes the following minimize problem:

Finding x∗ ∈ C such that ϕ(y)− ϕ(x∗) ≥ 0,∀y ∈ C. (2.19)

The set of solutions for the problem (2.19) is denoted by Argmin(ϕ).

The problem (2.16) is very general in the sense that it includes, as special

cases, fixed point problems, optimization problems, variational inequality problems,

Nash equilibrium problems, the equilibrium problems and others; see, e.g., [5, 7, 40]

and the reference therein.

For solving the mixed equilibrium problem for an equilibrium bifunction

F : C × C −→ R, let us assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
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(A3) For each y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous;

(A4) For each x ∈ C, y 7→ F (x, y) is convex;

(A5) For each x ∈ C, y 7→ F (x, y) is lower semicontinuous;

(B1) For each x ∈ H and r > 0, there exist a bounded subset Dx ⊂ C and yx ∈ C

such that, for any z ∈ C\Dx

F (z, yx) + ϕ(yx)− ϕ(z) +
1

r
〈yx − z, z − x〉 < 0;

(B2) C is a bounded set.

In this research, motivated and inspired by the above facts, we introduce

a new iterative scheme for finding a common element of the set of fixed points

of three nonexpansive mappings, and the set of solutions of a mixed equilibrium

problem in a real Hilbert space. Strong convergence results are derived under

suitable conditions in a real Hilbert space.

According to our framework throughout this research, we first preview some

definitions involving a Banach space E as follows. Let U = {x ∈ E : ‖x‖ = 1}.

• E is said to be uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0 such

that, for any x, y ∈ U , ‖x− y‖ ≥ ε implies ‖x+y
2
‖ ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly

convex.

• E is said to be smooth if limt→0
‖x+ty‖−‖x‖

t
exists for all x, y ∈ U .

It is also said to be uniformly smooth if the limit is attained uniformly for all

x, y ∈ U . The modulus of smoothness of E is defined by

ρ(τ) = sup
{1

2
(‖x + y‖+ ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}
,
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where ρ : [0,∞) → [0,∞) is a function.

It is known that E is uniformly smooth if and only if limτ→0
ρ(τ)

τ
= 0.

• E is said to be q-uniformly smooth if there exists a constant c > 0 such that

ρ(τ) ≤ cτ q for all τ > 0 where q is a fixed real number with 1 < q ≤ 2.

Let E be a real Banach space and E∗ be the dual space of E with norm ‖ · ‖

and 〈·, ·〉 pairing between E and E∗. For q > 1, the generalized duality mapping

Jq : E → 2E∗
is defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}

for all x ∈ E. In particular, if q = 2, the mapping J2 is called the normalized

duality mapping and written by J2 = J as usual. Further, we have the following

properties of the generalized duality mapping Jq:

(i) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0;

(ii) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);

(iii) Jq(−x) = −Jq(x) for all x ∈ E.

Certainly, if E is smooth, then Jq is single-valued and can be written by jq (see

also [10, 53]).

Let C be a nonempty closed convex subset of a real Banach space E. Recall

that a mapping A : C → C is said to be

(i) Lipschitzian with Lipschitz constant L > 0 if ‖Ax−Ay‖ ≤ L‖x−y‖, ∀x, y ∈ C;

(ii) nonexpansive if ‖Ax− Ay‖ ≤ ‖x− y‖, ∀x, y ∈ C.

An operator A : C → E is said to be

(i) accretive if there exists jq(x− y) ∈ Jq(x− y) such that

〈Ax− Ay, jq(x− y)〉 ≥ 0, ∀x, y ∈ C;

(ii) β-strongly accretive if for any β > 0 there exists jq(x−y) ∈ Jq(x−y) such that

〈Ax− Ay, jq(x− y)〉 ≥ β‖x− y‖q, ∀x, y ∈ C;
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(iii) β-inverse strongly accretive if, for any β > 0 there exists jq(x− y) ∈ Jq(x− y),

〈Ax− Ay, jq(x− y)〉 ≥ β‖Ax− Ay‖q, ∀x, y ∈ C.

Let D be a subset of C and Q : C → D. Then Q is said to be sunny if

Q(Qx + t(x−Qx)) = Qx, whenever Qx + t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A

subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny

nonexpansive retraction Q of C onto D (see [51, 12, 29]). A mapping Q : C → C

is called a retraction if Q2 = Q. If a mapping Q : C → C is a retraction, then

Qz = z for all z are in the range of Q.

A family S = {S(s) : 0 ≤ s < ∞} of mappings of C into itself is called a

nonexpansive semigroup on C if it satisfies the following conditions:

(i) S(0)x = x for all x ∈ C;

(ii) S(s + t) = S(s)S(t) for all s, t ≥ 0;

(iii) ‖S(s)x− S(s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0;

(iv) for each x ∈ C, the mapping S(·)x from [0,∞) into C is continuous.

Let F (S) stands for the common fixed point set of the semigroup S, i.e., F (S) =

{x ∈ C : S(s)x = x, ∀s > 0}. It is easy to see that F (S) is closed and convex (see

also [30, 31, 61, 15]).

In 1969, Takahashi [58] proved the first fixed point theorem for a noncom-

mutative semigroup of nonexpansive mappings which generalizes De Marr’s [44]

fixed point theorem. For works related to semigroups of nonexpansive, asymptot-

ically nonexpansive, and asymptotically nonexpansive type related to reversibility

of a semigroup, we refer the reader to [18, 23, 37, 32, 33, 34, 35, 36, 59, 1, 16, 20].

In 2007, Lau et al. [35] introduced the following Mann’s explicit iteration process;

xn+1 = αnx + (1− αn)T (µn)xn, ∀n ≥ 1,
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for a semigroup S = {T (s) : s ∈ S} of nonexpansive mappings on a compact convex

subset C of a smooth and strictly convex Banach space. In 2012, Wangkeeree and

Preechasilp [62] introduced the iterative scheme:

x1 ∈ C,

zn = γnxn + (1− γn)T (tn)xn,

yn = αnxn + (1− αn)T (tn)zn,

xn+1 = βnf(xn) + (1− βn)yn, n ≥ 0.

They proved the strong convergence theorems by using a nonexpansive semigroup

in Banach spaces.

In 2006, Aoyama et al. [3] proved a weak convergence theorem in Banach

spaces by using the iterative algorithm as the following x1 = x ∈ C,

xn+1 = αnxn + (1− αn)QC(xn − λnAxn),

for all n ≥ 1. They solved the generalized variational inequality problem for finding

a point x ∈ C such that

〈Ax, J(y − x)〉 ≥ 0 (2.20)

for all y ∈ C. The solution set of (2.20) is denoted by V I(C, A). Variational

inequality has become a rich of inspiration in pure and applied mathematics. Re-

cently, classical variational inequality problems have been extended and generalized

to study a large variety of problems arising in structural analysis, economics, op-

timization, operations research and engineering sciences and have witnessed an

explosive growth in theoretical advances, algorithmic development, etc; see e.g.

[8, 9, 21].

In 2013, Song and Ceng [55] proved a strong convergence theorem in a
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q-uniformly smooth Banach space as the following:

x1 ∈ C,

zn = QC(xn − σBxn),

kn = QC(zn − λAzn),

yn = βnkn + (1− αn)xn,

xn+1 = QC [αnγfxn + γnxn + ((1− γn)I − αnµV )Tnyn], n ≥ 0.

(2.21)

They introduced a general iterative algorithm for finding a common element of the

set of common fixed points of an infinite family of nonexpansive mappings and the

solution set of systems of variational inequalities.

Motivated and inspired by Wangkeeree and Preechasilp [62] and Song and

Ceng [55]. In this paper, we introduce a new iterative scheme for finding common

solutions of a variational inequality for an inverse-strongly accretive mapping and

the solutions of a fixed point problem for a nonexpansive semigroup by using the

modified Mann iterative method. We shall prove the strong convergence theorem in

a q-uniformly smooth Banach spaces under some parameters controlling conditions.

Our results extend and improve the recent results of Aoyama et al. [3], Wangkeeree

and Preechasilp [62], Song and Ceng [55] and other authors.



CHAPTER IV

MAIN RESULTS

Strong convergence theorem

Theorem 3.80. Let H be a real Hilbert space, T, S, K : H −→ H a nonexpansive

mapping satisfy the condition (A′′) with Ω := F (T )∩F (S)∩F (K)∩MEP (F, ϕ) 6= ∅.

Let f : H −→ H an ηf -strongly monotone and kf -Lipschitzian mapping, g : H −→

H an ηg-strongly monotone and kg-Lipschitzian mapping, h : H −→ H an ηh-

strongly monotone and kh-Lipschitzian mapping. For any x0 ∈ H, {xn} is defined

by 
zn = cnxn + (1− cn)Kαn

h Trnxn,

yn = bnxn + (1− bn)Sβn
g zn,

xn+1 = anxn + (1− an)T
λn+1

f yn, ∀n ≥ 0,

(3.22)

where

T
λn+1

f x = Tx− λn+1µff(Tx), ∀x ∈ H,

Sβn
g x = Sx− βnµgg(Sx), ∀x ∈ H, (3.23)

Kαn
h x = Kx− αnµhh(Kx), ∀x ∈ H,

and {an} ⊂ (0, 1), {bn} ⊂ (0, 1), {cn} ⊂ (0, 1) and {λn} ⊂ [0, 1), {βn} ⊂ [0, 1),

{αn} ⊂ [0, 1), {rn} ⊂ (0,∞) satisfying the following conditions:

(i) α ≤ an ≤ β, α ≤ bn ≤ β, α ≤ cn ≤ β for some α, β ∈ (0, 1),

(ii)
∑∞

n=1 λn < ∞,
∑∞

n=1 βn < ∞ and
∑∞

n=1 αn < ∞,

(iii) 0 < µf < 2ηf/k
2
f , 0 < µg < 2ηg/k

2
g and 0 < µh < 2ηh/k

2
h,

(iv) lim infn−→∞ rn > 0.

Then {xn} converges strongly to a point x∗ ∈ Ω.
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Proof. We shall show that {xn} is bounded.

Take p ∈ and let un = Trnxn. So, we have

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖. (3.24)

From Lemma 2.61, we have

‖Sβn
g zn − p‖ = ‖Sβn

g zn − Sβn
g p + Sβn

g p− p‖

≤ (1− βnτg)‖zn − p‖+ βnµg‖g(p)‖, (3.25)

‖Kαn
h un − p‖ = ‖Kαn

h un −Kαn
h p + Kαn

h p− p‖

≤ (1− αnτh)‖un − p‖+ αnµh‖h(p)‖ (3.26)

and

‖T λn+1

f yn − p‖ = ‖T λn+1

f yn − T
λn+1

f p + T
λn+1

f p− p‖

≤ ‖T λn+1

f yn − T
λn+1

f p‖+ ‖T λn+1

f p− p‖

≤ (1− λn+1τf )‖yn − p‖+ λn+1µf‖f(p)‖, (3.27)

where

τg = 1−
√

1− µg(2ηg − µgk2
g), τf = 1−

√
1− µf (2ηf − µfk2

f ), τh = 1−
√

1− µh(2ηh − µhk2
h).

It follows that

‖Kαn
h un − p‖2 ≤ (1− αnτh)

2‖un − p‖2 + 2(1− αnτh)αnµh‖h(p)‖‖un − p‖+ α2
nµ

2
h‖h(p)‖2

≤ ‖un − p‖2 + 2αnµh‖h(p)‖‖un − p‖+ α2
nµ

2
h‖h(p)‖2, (3.28)

‖T λn+1

f yn − p‖2 ≤ (1− λn+1τf )
2‖yn − p‖2 + 2λn+1µf‖f(p)‖‖yn − p‖+ λ2

n+1µ
2
f‖f(p)‖2

≤ ‖yn − p‖2 + 2λn+1µf‖f(p)‖‖yn − p‖+ λ2
n+1µ

2
f‖f(p)‖2. (3.29)
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By (3.24) and (3.26), we have

‖zn − p‖ = ‖cn(xn − p) + (1− cn)(Kαn
h un − p)‖

≤ cn‖xn − p‖+ (1− cn)(1− αnτh)‖un − p‖

+ (1− cn)αnµh‖h(p)‖

≤ cn‖xn − p‖+ (1− cn)(1− αnτh)‖xn − p‖

+ (1− cn)αnµh‖h(p)‖

≤ [cn + (1− cn)(1− αnτh)]‖xn − p‖+ (1− cn)αnµh‖h(p)‖.(3.30)

It follows that

‖zn − p‖2 = ‖cn(xn − p) + (1− cn)(Kαn
h un − p)‖2

≤ cn‖xn − p‖2 + (1− cn)‖Kαn
h un − p‖2

≤ cn‖xn − p‖2 + (1− cn)
[
‖un − p‖2 + 2αnµh‖h(p)‖‖un − p‖

+ α2
nµ

2
h‖h(p)‖2

]
≤ cn‖xn − p‖2 + (1− cn)‖un − p‖2 + 2αnµh‖h(p)‖‖un − p‖

+ α2
nµ

2
h‖h(p)‖2. (3.31)

From (3.25) and (3.30), we have

‖yn − p‖ = ‖bn(xn − p) + (1− bn)(Sβn
g zn − p)‖

≤ bn‖xn − p‖+ (1− bn)(1− βnτg)‖zn − p‖+ (1− bn)βnµg‖g(p)‖

≤ bn‖xn − p‖+ (1− bn)(1− βnτg)
[
(cn + (1− cn)(1− αnτh))‖un − p‖

+ (1− cn)αnµh‖h(p)‖
]

+ (1− bn)βnµg‖g(p)‖

≤ bn‖xn − p‖+ (1− bn)(1− βnτg)
[
(cn + (1− cn)(1− αnτh))‖xn − p‖

+ (1− cn)αnµh‖h(p)‖
]

+ (1− bn)βnµg‖g(p)‖

≤ [bn + (1− bn)(1− βnτg)cn + (1− bn)(1− βnτg)(1− cn)]‖xn − p‖

+ (1− bn)(1− cn)αnµh‖h(p)‖+ (1− bn)βnµg‖g(p)‖

≤ ‖xn − p‖+ αnµh‖h(p)‖+ βnµg‖g(p)‖. (3.32)
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It follows that

‖yn − p‖2 = ‖bn(xn − p) + (1− bn)(Sβn
g zn − p‖2

≤ bn‖xn − p‖2 + (1− bn)‖Sβn
g zn − p)‖2

≤ bn‖xn − p‖2 + (1− bn)
[
‖zn − p‖2 + 2βnµg‖g(p)‖‖zn − p‖

+ β2
nµ

2
g‖g(p)‖2

]
≤ bn‖xn − p‖2 + (1− bn)‖zn − p‖2 + 2βnµg‖g(p)‖‖zn − p‖

+ β2
nµ

2
g‖g(p)‖2. (3.33)

Substitute (3.30) into (3.25) to get

‖Sβn
g zn − p‖ ≤ (1− βnτg)

[
[cn + (1− cn)(1− αnτh)]‖xn − p‖+ (1− cn)αnµg‖h(p)‖

]
+ βnµg‖g(p)‖

≤ (1− βnτg)[cn + (1− cn)(1− αnτh)]‖xn − p‖

+ (1− βnτg)(1− cn)αnµg‖h(p)‖+ (1− βnτg)βnµg‖g(p)‖

≤ (1− βnτg)‖xn − p‖+ αnµg‖h(p)‖+ βnµg‖g(p)‖. (3.34)

By (3.27), (3.30) and (3.32), we have

‖xn+1 − p‖ = ‖an(xn − p) + (1− an)(T
λn+1

f yn − p)‖

≤ an‖xn − p‖+ (1− an)‖T λn+1

f yn − p‖

≤ an‖xn − p‖+ (1− an)(1− λn+1τf )‖yn − p‖+ (1− an)λn+1µf‖f(p)‖

≤ an‖xn − p‖+ (1− an)(1− λn+1τf )
[
‖xn − p‖+ αnµh‖h(p)‖

+ βnµg‖g(p)‖
]

+ (1− an)λn+1µf‖f(p)‖

≤ an‖xn − p‖+ (1− an)(1− λn+1τf )‖xn − p‖

+ (1− an)(1− λn+1τf )αnµh‖h(p)‖

+ (1− an)(1− λn+1τf )βnµg‖g(p)‖

+ (1− an)λn+1µf‖f(p)‖

≤ [an + (1− an)(1− λn+1τf )]‖xn − p‖+ (1− an)αnµh‖h(p)‖

+ (1− an)βnµg‖g(p)‖+ (1− an)λn+1µf‖f(p) (3.35)
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which implies that

‖xn+1 − p‖ ≤ ‖xn − p‖+ αnµh‖h(p)‖+ βnµg‖g(p)‖+ λn+1µf‖f(p)‖.(3.36)

From Lemma 2.62 and the conditions:
∑∞

n=1 αn < ∞,
∑∞

n=1 βn < ∞,
∑∞

n=1 λn <

∞, it follows that limn−→∞ ‖xn − p‖ exists for each p ∈ Γ and {xn} is bounded.

Suppose that

lim
n−→∞

‖xn − p‖ = c for some c ≥ 0. (3.37)

From (3.32), we know that

‖yn − p‖ ≤ ‖xn − p‖+ αnµh‖h(p)‖+ βnµg‖g(p)‖.

Taking lim sup on both the sides in above inequality, we have

lim sup
n−→∞

‖yn − p‖ ≤ c. (3.38)

Furthermore, by (3.27), we have

lim sup
n−→∞

‖T λn+1

f yn − p‖ ≤ c. (3.39)

Since limn−→∞ ‖xn+1 − p‖ = c, it follows that

‖xn+1 − p‖ = ‖an(xn − p) + (1− an)(T
λn+1

f yn − p)‖ −→ c

as n −→∞. Thus by Lemma 2.63, we have

lim
n−→∞

‖xn − T
λn+1

f yn‖ = 0. (3.40)

Next, from (3.27), we consider

‖xn − p‖ ≤ ‖xn − T
λn+1

f yn‖+ ‖T λn+1

f yn − p‖

≤ ‖xn − T
λn+1

f yn‖+ ‖yn − p‖+ λn+1µf‖f(p)‖, (3.41)

which implies that

c ≤ lim inf
n−→∞

‖yn − p‖ ≤ lim sup
n−→∞

‖yn − p‖ ≤ c,
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that is,

lim
n−→∞

‖yn − p‖ = lim
n−→∞

‖bn(xn − p) + (1− bn)(Sβn
g zn − p)‖ = c. (3.42)

From (3.34), we know that

‖Sβn
g zn − p‖ ≤ ‖xn − p‖+ αnµh‖h(p)‖+ βnµg‖g(p)‖

which means

lim sup
n−→∞

‖Sβn
g zn − p‖ ≤ c. (3.43)

By Lemma 2.63, (3.42) and (3.43), we obtain

lim
n−→∞

‖Sβn
g zn − xn‖ = 0. (3.44)

Now, by (3.30), we have

‖zn − p‖ = ‖cn(xn − p) + (1− cn)(Kαn
h un − p)‖

≤ ‖xn − p‖+ (1− cn)αnµh‖h(p)‖. (3.45)

Taking lim sup on both the sides in above inequality, we have

lim sup
n−→∞

‖zn − p‖ ≤ c. (3.46)

Next, from (3.25) and (3.44), we consider

‖xn − p‖ ≤ ‖xn − Sβn
g zn‖+ ‖Sβn

g zn − p‖

≤ ‖xn − Sβn
g zn‖+ ‖zn − p‖+ βnµg‖g(p)‖, (3.47)

which implies that

c ≤ lim inf
n−→∞

‖zn − p‖ ≤ lim sup
n−→∞

‖zn − p‖ ≤ c,

i.e.

lim
n−→∞

‖zn − p‖ = lim
n−→∞

‖cn(xn − p) + (1− cn)(Kαn
h un − p)‖ = c. (3.48)
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From (3.26), we know that

‖Kαn
h un − p‖ ≤ ‖xn − p‖+ αnµh‖h(p)‖

which means

lim sup
n−→∞

‖Kαn
h un − p‖ ≤ c. (3.49)

By Lemma 2.63, (3.48) and (3.49), we obtain

lim
n−→∞

‖Kαn
h un − xn‖ = 0. (3.50)

We know that {xn} is bounded and {h(K(xn))} is bounded, thus form (3.50) it

follows that

‖xn −Kun‖ ≤ ‖xn −Kαn
h un‖+ ‖Kαn

h un −Kun‖

≤ ‖xn −Kαn
h un‖+ αnµh‖h(K(un))‖ −→ 0. (3.51)

From (3.50), we have

‖zn − xn‖ = (1− cn)‖Kαn
h un − xn‖ −→ 0. (3.52)

Since {g(Szn)} is bounded, by (3.44) and (3.52), it follows that

‖xn − Sxn‖ ≤ ‖xn − Sβn
g zn‖+ ‖Sβn

g zn − Sxn‖

≤ ‖xn − Sβn
g zn‖+ ‖Szn − Sxn‖+ βnµg‖g(S(zn))‖

≤ ‖xn − Sβn
g zn‖+ ‖zn − xn‖+ βnµg‖g(S(zn))‖ −→ 0. (3.53)

On the other hand, in the light of Lemma 2.65 (iii) Trn is firmly nonexpansive, so

we have

‖un − p‖2 = ‖Jrnxn − Jrnp‖2

≤ 〈Jrnxn − Jrnp, xn − p〉 = 〈un − p, xn − p〉

=
1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖2), (3.54)

which implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2. (3.55)
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Form (3.29), (3.31), (3.33) and (3.55), we have

‖xn+1 − p‖2 ≤ an‖xn − p‖2 + (1− an)‖T λn+1

f yn − p‖2

≤ an‖xn − p‖2 + (1− an)
[
‖yn − p‖2 + 2λn+1µf‖f(p)‖‖yn − p‖

+ λ2
n+1µ

2
f‖f(p)‖2

]
≤ an‖xn − p‖2 + (1− an)‖yn − p‖2 + 2λn+1µf‖f(p)‖‖yn − p‖

+ λ2
n+1µ

2
f‖f(p)‖2

≤ an‖xn − p‖2 + (1− an)
[
bn‖xn − p‖2 + (1− bn)‖zn − p‖2

+ 2βnµg‖g(p)‖‖zn − p‖+ β2
nµ

2
g‖g(p)‖2

]
+ 2λn+1µf‖f(p)‖‖yn − p‖+ λ2

n+1µ
2
f‖f(p)‖2

≤ an‖xn − p‖2 + (1− an)bn‖xn − p‖2 + (1− bn)‖zn − p‖2

+ 2βnµg‖g(p)‖‖zn − p‖+ β2
nµ

2
g‖g(p)‖2

+ 2λn+1µf‖f(p)‖‖yn − p‖+ λ2
n+1µ

2
f‖f(p)‖2

≤ an‖xn − p‖2 + (1− an)bn‖xn − p‖2

+ (1− an)(1− bn)
[
cn‖xn − p‖2 + (1− cn)‖un − p‖2

+ 2αnµh‖h(p)‖‖un − p‖+ α2
nµ

2
h‖h(p)‖2

]
+ 2λn+1µf‖f(p)‖‖yn − p‖+ λ2

n+1µ
2
f‖f(p)‖2

≤ an‖xn − p‖2 + (1− an)bn‖xn − p‖2 + (1− an)(1− bn)cn‖xn − p‖2

+ (1− an)(1− bn)(1− cn)‖un − p‖2

+ 2αnµh‖h(p)‖‖un − p‖+ α2
nµ

2
h‖h(p)‖2

+ 2λn+1µf‖f(p)‖‖yn − p‖+ λ2
n+1µ

2
f‖f(p)‖2

≤ [an + (1− an)bn + (1− an)(1− bn)cn]‖xn − p‖2

+ (1− an)(1− bn)(1− cn)
[
‖xn − p‖2 − ‖xn − un‖2

]
+ 2αnµh‖h(p)‖‖un − p‖+ α2

nµ
2
h‖h(p)‖2

+ 2λn+1µf‖f(p)‖‖yn − p‖+ λ2
n+1µ

2
f‖f(p)‖2. (3.56)
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It follows that

(1− an)(1− bn)(1− cn)‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2αnµh‖h(p)‖‖un − p‖+ α2
nµ

2
h‖h(p)‖2

+ 2λn+1µf‖f(p)‖‖yn − p‖+ λ2
n+1µ

2
f‖f(p)‖2

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

+ 2αnµh‖h(p)‖‖un − p‖+ α2
nµ

2
h‖h(p)‖2

+ 2λn+1µf‖f(p)‖‖yn − p‖

+ λ2
n+1µ

2
f‖f(p)‖2. (3.57)

By condition (ii), (3.37) and lim infn−→∞(1− an)(1− bn)(1− cn) > 0, we obtain

lim
n−→∞

‖xn − un‖ = 0 (3.58)

By (3.51) and (3.58), we obtain

‖xn −Kxn‖ ≤ ‖xn −Kun‖+ ‖Kun −Kxn‖

≤ ‖xn −Kun‖+ ‖un − xn‖ −→ 0. (3.59)

Moreover, from (3.40) and (3.44), it follows that

‖xn − Txn‖ ≤ ‖Txn − T
λn+1

f yn‖+ ‖T λn+1

f yn − xn‖

= ‖Txn − [Tyn − λn+1µff(T (yn))]‖+ ‖T λn+1

f yn − xn‖

≤ ‖xn − yn‖+ λn+1µf‖f(T (yn))‖+ ‖T λn+1

f yn − xn‖

≤ (1− bn)‖xn − Sβn
g zn‖+ λn+1µf‖f(T (yn))‖

+ ‖T λn+1

f yn − xn‖ −→ 0. (3.60)

From (3.37) if c = 0, there is nothing to prove. Suppose c > 0. By (3.60), we know

that limn−→∞ ‖xn−Txn‖ = limn−→∞ ‖xn−Kxn‖ = limn−→∞ ‖xn−Sxn‖ = 0. Since

T, S, K satisfy the condition (A′′), then f(d(xn, Ω)) ≤ (1/3)(‖xn − Txn‖ + ‖xn −

Sxn‖+‖xn−Kxn‖). By (3.51), (3.53) and (3.60), we have limn−→∞ f(d(xn, Ω)) = 0.

Since f is a nondecreasing function and f(0) = 0, therefore

lim inf
n−→∞

d(xn, Ω) = 0. (3.61)
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For any p ∈ F , we get

‖f(p)‖ ≤ ‖f(p)− f(xn)‖+ ‖f(xn)‖ ≤ kf‖xn − p‖+ ‖f(xn)‖, (3.62)

‖g(p)‖ ≤ ‖g(p)− g(xn)‖+ ‖g(xn)‖ ≤ kg‖xn − p‖+ ‖g(xn)‖, (3.63)

‖h(p)‖ ≤ ‖h(p)− h(xn)‖+ ‖h(xn)‖ ≤ kh‖xn − p‖+ ‖h(xn)‖. (3.64)

Note the fact that there exist two positive constants M1, M2, such that ‖h(xn)‖ ≤

M1, ‖g(xn)‖ ≤ M2 and ‖f(xn)‖ ≤ M3. From (3.36) and the above relations, it

follows that

‖xn+1 − p‖ ≤ ‖xn − p‖+ αnµh‖h(p)‖+ βnµg‖g(p)‖+ λn+1µf‖f(p)‖

≤ (1 + αnµhkh + βnµgkg + λn+1µfkf )‖xn − p‖

+ αnµh‖h(p)‖+ βnµg‖g(p)‖+ λn+1µf‖f(p)‖

≤ (1 + αnµhkh + βnµgkg + λn+1µfkf )‖xn − p‖

+ αnµhM1 + βnµgM2 + λn+1µfM3. (3.65)

Thus

d(xn+1, Ω) ≤ (1+αnµhkh+βnµgkg+λn+1µfkf )d(xn, F )+αnµhM1+βnµgM2+λn+1µfM3.

Since
∑∞

n=0 αn < ∞,
∑∞

n=1 βn < ∞ and
∑∞

n=1 λn < ∞, by (3.61), we know that

limn−→∞ d(xn, F ) = 0. We now prove that {xn} is a Cauchy sequence.

Taking M = exp(
∑∞

i=0(αiµhkh+βiµgkg+λi+1µfkf )), for any ε > 0, there ex-

ists positive integer N such that d(xn, Γ) < ε/(2M) and
∑∞

i=N(αiµhM1 +βiµgM2 +

λi+1µfM3) < ε/(2M) as n ≥ N . Let p ∈ Γ, for any n, m ≥ N , it follows from
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(3.65) that

‖xn+1 − xm+1‖ ≤ ‖xn+1 − p‖+ ‖xm+1 − p‖

≤ (1 + αnµhkh + βnµgkg + λn+1µfkf )‖xn − p‖+ αnµhM1 + βnµgM2

+ λn+1µfM3 − (1 + αmµhkh + βmµgkg + λm+1µfkf )‖xm − p‖

+ αmµhM1 + βmµgM2 + λm+1µfM3

≤
N∏

i=1

(1 + αiµhkh + βiµgkg + λi+1µfkf )‖xN − p‖+ αnµhM1 + βnµgM2

+ λn+1µfM3 +
n−1∑
i=N

(αiµhM1 + βiµgM2 + λi+1µfM3)×

n∏
j=i+1

(1 + αjµhkh + βjµgkg + λj+1µfkf )

+
m∏

i=N

(1 + αiµhkh + βiµgkg + λi+1µfkf )‖xN − p‖+ αmµhM1

+ βmµgM2 + λm+1µfM3 +
m−1∑
i=N

(αiµhM1 + βiµgM2 + λi+1µfM3)×

m∏
j=i+1

(1 + αjµhkh + βjµgkg + λj+1µfkf )

≤ 2 exp(
∞∑

i=N

(αiµhkh + βiµgkg + λj+1µfkf ))‖xN − p‖

+ 2 exp(
∞∑

i=N

(αiµhkh + βiµgkg + λj+1µfkf ))

×
∞∑

i=N

(αiµhM1 + βiµgM2 + λi+1µfM3) (3.66)

Thus

‖xn+1 − xm+1‖ ≤ 2M‖xN − p‖+ 2M
∞∑

i=N

(αiµhM1 + βiµgM2 + λi+1µfM3),

which gives

‖xn+1 − xm+1‖ ≤ 2Md(xN , F ) + 2M
∞∑

i=N

(αiµhM1 + βiµgM2 + λi+1µfM3) < ε.

This implies that {xn} is a Cauchy sequence. Therefore, there exists x∗ ∈ H such

that {xn} converges strongly to x∗. It follows from ‖xn − Txn‖ −→ 0 and (I − T )
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being continuous that

‖(I − T )(xn − x∗)‖ −→ 0

as n −→ ∞ which implies x∗ = Tx∗. Hence x∗ ∈ F (T ). By the same reasoning,

we have x∗ ∈ F (S) and x∗ ∈ F (K).

Finally, we prove that w ∈ MEP (F, ϕ).

By un = Trnxn, we know that

F (un, y) + ϕ(y) + ϕ(un) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

It follows from (A2) that

ϕ(y) + ϕ(un) +
1

rn

〈y − un, un − xn〉 ≥ F (y, un), ∀y ∈ C.

Hence,

ϕ(y) + ϕ(uni
) + 〈y − uni

,
uni

− xni

rni

〉 ≥ F (y, uni
), ∀y ∈ C.

It follows from (A4), (A5), and the weakly lower semicontinuity of ϕ,
uni−xni

rni
−→ 0

and uni
⇀ w that

F (y, w) + ϕ(w)− ϕ(y) ≤ 0, ∀y ∈ C.

For 0 < t ≤ 1 and y ∈ C, let yt = ty +(1− t)w. Since y ∈ C and w ∈ C, we obtain

yt ∈ C and hence F (yt, w) + ϕ(w) + ϕ(yt) ≤ 0. So by (A4) and the convexity of ϕ,

we have

0 = F (yt, yt) + ϕ(yt)− ϕ(yt)

≤ tF (yt, y) + (1− t)F (yt, w) + tϕ(y) + (1− t)ϕ(w)− ϕ(yt)

≤ t[F (yt, y) + ϕ(y)− ϕ(yt)].

Dividing by t, we get

F (yt, y) + ϕ(y)− ϕ(yt) ≥ 0.
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Letting t −→ 0, it follows from (A3) and the weakly lower semicontinuity of ϕ that

F (w, y) + ϕ(y)− ϕ(w) ≥ 0,

for all y ∈ C and hence w ∈ MEP (F, ϕ). It follows that x∗ ∈ Ω. The proof is

completed

Corollary 3.81. Let H be a real Hilbert space, T, S, K : H −→ H a nonexpansive

mapping satisfy the condition (A′′) with F (T )∩F (S)∩F (K) 6= ∅. Let f : H −→ H

an ηf -strongly monotone and kf -Lipschitzian mapping, g : H −→ H an ηg-strongly

monotone and kg-Lipschitzian mapping, h : H −→ H an ηh-strongly monotone and

kh-Lipschitzian mapping. For any x0 ∈ H, {xn} is defined by
zn = cnxn + (1− cn)Kαn

h xn,

yn = bnxn + (1− bn)Sβn
g zn,

xn+1 = anxn + (1− an)T
λn+1

f yn, ∀n ≥ 0,

(3.67)

where

T
λn+1

f x = Tx− λn+1µff(Tx), ∀x ∈ H,

Sβn
g x = Sx− βnµgg(Sx), ∀x ∈ H, (3.68)

Kαn
h x = Kx− αnµhh(Kx), ∀x ∈ H,

and {an} ⊂ (0, 1), {bn} ⊂ (0, 1), {cn} ⊂ (0, 1) and {λn} ⊂ [0, 1), {βn} ⊂ [0, 1),

{αn} ⊂ [0, 1) satisfying the following conditions:

(i) α ≤ an ≤ β, α ≤ bn ≤ β, α ≤ cn ≤ β for some α, β ∈ (0, 1),

(ii)
∑∞

n=1 λn < ∞,
∑∞

n=1 βn < ∞ and
∑∞

n=1 αn < ∞,

(iii) 0 < µf < 2ηf/k
2
f , 0 < µg < 2ηg/k

2
g and 0 < µh < 2αh/k

2
h.

Then {xn} converge strongly to a point x∗ ∈ F (T ) ∩ F (S) ∩ F (K).
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Proof. Put F (x, y) = 0 for all x, y ∈ C, ϕ ≡ 0 and rn = 1 in Theorem 3.80. Thus,

we have Trnxn = xn. Then the sequence {xn} generated in Corallary 3.81 converges

strongly to x∗ ∈ F (T ) ∩ F (S) ∩ F (K).

Theorem 3.82. Let C be a sunny nonexpansive retract and nonempty closed con-

vex subset of a q-uniformly smooth and uniformly convex Banach space E which

admits a weakly sequentially continuous generalized duality mapping Jq : E → E∗.

Let QC be a sunny nonexpansive retraction from E onto C, A : C → E be an

β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0} be a nonexpansive semi-

group from C into itself, L1 : C → E be a L-Lipschitzian mapping with constant

L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with

constant κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such

that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1 where cq is a positive real num-

ber, 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q
) and

F := F (S) ∩ V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
,

xn+1 = βnxn + (1− βn)S(µn)yn,

(3.69)

which satisfy the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=0 αn = ∞; and limn→∞ |αn+1 − αn| = 0;

(C2) limn→∞ |λn+1 − λn| = 0, lim infn→∞ λn > 0;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C4) limn→∞ µn = 0;

(C5) limn→∞ supx∈C̃ ‖S(µn+1)x− S(µn)x‖ = 0, C̃ bounded subset of C;

(C6) limn→∞ |γn+1 − γn| = 0, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
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Then {xn} converges strongly to x∗ ∈ F which also solves the following variational

inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0,∀z ∈ F. (3.70)

Proof . First of all, we prove that {xn} is bounded. Let p ∈ F and 0 < a ≤ λn ≤

b < ( qβ
cq

)
1

q−1 , we have

‖zn − p‖q = ‖QC(xn − λnAxn)−QC(p− λnAp)‖q

≤ ‖(I − λnA)xn − (I − λnA)p‖q

= ‖(xn − p)− λn(Axn − Ap)‖q

≤ ‖xn − p‖q − qλn〈Axn − Ap, jq(xn − p)〉+ cqλ
q
n‖Axn − Ap‖q

≤ ‖xn − p‖q − qβλn‖Axn − Ap‖2 + cqλ
q
n‖Axn − Ap‖q

= ‖xn − p‖q − λn(qβ − cqλ
q−1
n )‖Axn − Ap‖q

≤ ‖xn − p‖q. (3.71)

Therefore ‖zn − p‖ ≤ ‖xn − p‖ and I − λnA is a nonexpansive where I is an

identity mapping. By condition (C1), we may assume, without loss of generality,

that αn < min{α, α
τ
} where 0 < α < lim infn→∞(1 − γn). From Lemma 2.76, we

conclude that ‖(1− γn)I − αnµL2‖ ≤ (1− γn)− αnτ . Since 0 ≤ γL < τ , we have

‖xn+1 − p‖ = ‖βn(xn − p) + (1− βn)(S(µn)yn − p)‖

≤ βn‖xn − p‖+ (1− βn)‖yn − p‖

= βn‖xn − p‖+ (1− βn)
∥∥QC

[
αnγL1xn + γnxn

+((1− γn)I − αnµL2)S(µn)zn

]
− p

∥∥
≤ βn‖xn − p‖+ (1− βn)‖[(1− γn)I − αnµL2][S(µn)zn − p]

+αn(γL1xn − µL2p) + γn(xn − p)‖
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≤ βn‖xn − p‖+ (1− βn)(1− γn − αnτ)‖S(µn)zn − p‖

+(1− βn)αn‖γL1xn − µL2p‖+ (1− βn)γn‖xn − p‖

≤ βn‖xn − p‖+ (1− βn)(1− γn − αnτ)‖xn − p‖

+(1− βn)αnγ‖L1xn − L1p‖+ (1− βn)αn‖γL1p− µL2p‖

+(1− βn)γn‖xn − p‖

≤ βn‖xn − p‖+ (1− βn)‖xn − p‖ − (1− βn)γn‖xn − p‖

−(1− βn)αnτ‖xn − p‖+ (1− βn)αnγL‖xn − p‖

+(1− βn)αn‖γL1p− µL2p‖+ (1− βn)γn‖xn − p‖

= ‖xn − p‖ − (1− βn)αnτ‖xn − p‖

+(1− βn)αnγL‖xn − p‖+ (1− βn)αn‖γL1p− µL2p‖

= ‖xn − p‖ − (1− βn)αn(τ − γL)‖xn − p‖

+(1− βn)αn(τ − γL)
‖γL1p− µL2p‖

τ − γL
.

By induction, we conclude that

‖xn − p‖ ≤ max
{
‖x1 − p‖, ‖γL1p− µL2p‖

τ − γL

}
,∀n ≥ 1.

This implies that {xn} is bounded, so are {Axn}, {yn}, {S(µn)yn}, {zn} and

{S(µn)zn}.

Next, we will show that limn→∞ ‖xn+1 − xn‖ = 0 and we observe that

‖zn+1 − zn‖ = ‖QC(xn+1 − λn+1Axn+1)−QC(xn − λnAxn)‖

≤ ‖(xn+1 − λn+1Axn+1)− (xn − λnAxn)‖

= ‖(xn+1 − λn+1Axn+1)− (xn − λn+1Axn) + (λn − λn+1)Axn‖

≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖+ |λn+1 − λn‖Axn‖

≤ ‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖,
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‖S(µn+1)zn+1 − S(µn)zn‖ ≤ ‖S(µn+1)zn+1 − S(µn+1)zn‖

+‖S(µn+1)zn − S(µn)zn‖

≤ ‖zn+1 − zn‖+ ‖S(µn+1)zn − S(µn)zn‖

≤ ‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖,

and

‖yn+1 − yn‖ =
∥∥QC

[
αn+1γL1xn+1 + γn+1xn+1

+((1− γn+1)I − αn+1µL2)S(µn+1)zn+1

]
−QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]∥∥
≤

∥∥[
αn+1γL1xn+1 + γn+1xn+1

+((1− γn+1)I − αn+1µL2)S(µn+1)zn+1

]
−

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]∥∥
=

∥∥[
αn+1γL1xn+1 + γn+1xn+1

+((1− γn+1)I − αn+1µL2)S(µn+1)zn+1

]
−

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
+αn+1γL1xn − αn+1γL1xn + γn+1xn − γn+1xn

+((1− γn+1)I − αn+1µL2)S(µn)zn

−((1− γn+1)I − αn+1µL2)S(µn)zn

∥∥
≤ αn+1γ‖L1xn+1 − L1xn‖+ γn+1‖xn+1 − xn‖

+
∥∥[

(1− γn+1)I − αn+1µL2

][
S(µn+1)zn+1 − S(µn)zn

]∥∥
+|αn+1 − αn|γ‖L1xn‖+ |αn+1 − αn|µ‖L2S(µn)zn‖

+|γn+1 − γn|‖S(µn)zn − xn‖
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≤ αn+1γL‖xn+1 − xn‖+ γn+1‖xn+1 − xn‖

+[(1− γn+1)I − αn+1τ ]‖S(µn+1)zn+1 − S(µn)zn‖

+|αn+1 − αn|
[
γ‖L1xn‖+ µ‖L2S(µn)zn‖

]
+|γn+1 − γn|‖S(µn)zn − xn‖

≤ αn+1γL‖xn+1 − xn‖+ γn+1‖xn+1 − xn‖

+[(1− γn+1)I − αn+1τ ]
[
‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖
]

+|αn+1 − αn|
[
γ‖L1xn‖+ µ‖L2S(µn)zn‖

]
+|γn+1 − γn|‖S(µn)zn − xn‖

= [1− αn+1(τ − γL)]‖xn+1 − xn‖

+[(1− γn+1)I − αn+1τ ]
[
|λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖
]

+|αn+1 − αn|
[
γ‖L1xn‖+ µ‖L2S(µn)zn‖

]
+|γn+1 − γn|‖S(µn)zn − xn‖

≤ ‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖

+|αn+1 − αn|
[
γ‖L1xn‖+ µ‖L2S(µn)zn‖

]
+|γn+1 − γn|‖S(µn)zn − xn‖

≤ ‖xn+1 − xn‖+
[
|αn+1 − αn|+ |γn+1 − γn|+ |λn+1 − λn|

]
M

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖,

where M = supn≥0

{
‖Axn‖, γ‖L1xn‖ + µ‖L2S(µn)zn‖, ‖S(µn)zn − xn‖

}
< ∞. It
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follows that

‖S(µn+1)yn+1 − S(µn)yn‖ ≤ ‖S(µn+1)yn+1 − S(µn+1)yn‖+ ‖S(µn+1)yn − S(µn)yn‖

≤ ‖yn+1 − yn‖+ ‖S(µn+1)yn − S(µn)yn‖

≤ ‖xn+1 − xn‖+
[
|αn+1 − αn|+ |γn+1 − γn|+ |λn+1 − λn|

]
M

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖

+ sup
y∈{yn}

‖S(µn+1)y − S(µn)y‖. (3.72)

Form the condition (C1), (C2), (C5)-(C6) and 3.72, we have

lim sup
n→∞

(
‖S(µn+1)yn+1 − S(µn)yn‖ − ‖xn+1 − xn‖

)
≤ 0.

Applying Lemma 2.74, we obtain

lim
n→∞

‖S(µn)yn − xn‖ = 0.

Therefore, we get

lim
n→∞

‖xn+1 − xn‖ = 0. (3.73)

Next, we will show that limn→∞ ‖xn − S(µn)xn‖ = 0, by the convexity of

‖ · ‖q for all q > 1, Lemma 2.72 and (3.71), we have

‖yn − p‖q = ‖QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
− p‖q

≤ ‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
+ αn

(
γL1xn − µL2S(µn)zn

)
‖q

≤ ‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
‖q

+q
〈
αn

(
γL1xn − µL2S(µn)zn

)
, Jq

(
γn(xn − p)

+(1− γn)
(
S(µn)zn − p

))〉
+cq‖αn

(
γL1xn − µL2S(µn)zn

)
‖q
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≤ γn‖xn − p‖q + (1− γn)‖S(µn)zn − p‖q

+qαn‖γL1xn − µL2S(µn)zn‖

×‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
‖q−1

+cqα
q
n‖γL1xn − µL2S(µn)zn‖q

≤ γn‖xn − p‖q + (1− γn)‖zn − p‖q + αnM1

≤ γn‖xn − p‖q + (1− γn)
[
‖xn − p‖q − λn(qβ − cqλ

q−1
n )‖Axn − Ap‖q

]
+αnM1

= ‖xn − p‖q − (1− γn)λn(qβ − cqλ
q−1
n )‖Axn − Ap‖q + αnM1,

where

M1 = sup
n≥0

{
q‖γL1xn − µL2S(µn)zn‖‖γn(xn − p) + (1− γn)

(
S(µn)zn − p

)
‖q−1

+cqα
q−1
n ‖γL1xn − µL2S(µn)zn‖q

}
< ∞.

By the convexity of ‖ · ‖q for all q > 1, we obtain

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1− βn)‖S(µn)yn − p‖q

≤ βn‖xn − p‖q + (1− βn)‖yn − p‖q

≤ βn‖xn − p‖q + (1− βn)
[
‖xn − p‖q

−(1− γn)λn(qβ − cqλ
q−1
n )‖Ax− Ay‖q + αnM1

= ‖xn − p‖q − (1− βn)(1− γn)λn(qβ − cqλ
q−1
n )‖Ax− Ay‖q

+(1− βn)αnM1.

By the fact that ar − br ≤ rar−1(a− b),∀r ≥ 1, we get

(1− βn)(1− γn)λn(qβ − cqλ
q−1
n )‖Ax− Ay‖q

≤ ‖xn − p‖q − ‖xn+1 − p‖q + (1− βn)αnM1

≤ q‖xn − p‖q−1
(
‖xn − p‖ − ‖xn+1 − p‖

)
+ (1− βn)αnM1

≤ q‖xn − p‖q−1‖xn − xn+1‖+ (1− βn)αnM1.
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From 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , the conditions (C1)-(C3), (C6) and (3.73), we

conclude that

lim
n→∞

‖Axn − Ap‖ = 0. (3.74)

From Proposition 2.66 (ii) and Lemma 2.71, we also have

‖zn − p‖2 = ‖QC(xn − λnAxn)−QC(p− λnAp)‖2

≤
〈
(xn − λnAxn)− (p− λnAp), J(zn − p)

〉
=

〈
(xn − p)− λn(Axn − Ap), J(zn − p)

〉
=

〈
xn − p, J(zn − p)

〉
− λn

〈
Axn − Ap, J(zn − p)

〉
≤ 1

2

[
‖xn − p‖2 + ‖zn − p‖2 − g‖xn − zn‖

]
+ λn‖Axn − Ap‖‖zn − p‖.

So, we get

‖zn − p‖2 ≤ ‖xn − p‖2 − g‖xn − zn‖+ 2λn‖Axn − Ap‖‖zn − p‖.

By Lemma 2.73, it follows that

‖yn − p‖2 = ‖QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
− p‖2

≤ ‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
+ αn

(
γL1xn − µL2S(µn)zn

)
‖2

≤ ‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
‖2

+2αn

〈
γL1xn − µL2S(µn)zn, J

(
γn(xn − p) + (1− γn)

(
S(µn)zn − p

)
+αn

(
γL1xn − µL2S(µn)zn

))〉
≤ γn‖xn − p‖2 + (1− γn)‖zn − p‖2 + αnM2

≤ γn‖xn − p‖2 + (1− γn)
[
‖xn − p‖2 − g‖xn − zn‖

+2λn‖Axn − Ap‖‖zn − p‖
]

+ αnM2

= ‖xn − p‖2 − (1− γn)g‖xn − zn‖+ 2(1− γn)λn‖Axn − Ap‖‖zn − p‖

+αnM2,

where

M2 = sup
n≥0

{
2
〈
γL1xn − µL2S(µn)zn, J

(
γn(xn − p) + (1− γn)

(
S(µn)zn − p

)
+αn

(
γL1xn − µL2S(µn)zn

))〉}
< ∞.
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We obtain

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖S(µn)yn − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖yn − p‖2

≤ βn‖xn − p‖2 + (1− βn)
[
‖xn − p‖2 − (1− γn)g‖xn − zn‖

+2(1− γn)λn‖Axn − Ap‖‖zn − p‖+ αnM2

]
= ‖xn − p‖2 − (1− βn)(1− γn)g‖xn − zn‖

+2(1− βn)(1− γn)λn‖Axn − Ap‖‖zn − p‖+ (1− βn)αnM2.

Then we get

(1− γn)g‖xn − zn‖ ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2(1− βn)(1− γn)λn‖Axn − Ap‖‖zn − p‖+ (1− βn)αnM2

≤ ‖xn − xn+1‖
(
‖xn − p‖+ ‖xn+1 − p‖

)
+2(1− βn)(1− γn)λn‖Axn − Ap‖‖zn − p‖+ (1− βn)αnM2.

By the conditions (C1)-(C3), (C6), (3.73) and (3.74), we have

lim
n→∞

g(‖xn − zn‖) = 0.

It follows from the property of g that

lim
n→∞

‖xn − zn‖ = 0. (3.75)
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Similar to the proof of (3.75), we start by using Lemma 2.70 and Lemma 2.73

‖yn − p‖2 = ‖QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
− p‖2

≤ ‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
+ αn

(
γL1xn − µL2S(µn)zn

)
‖2

≤ ‖γn(xn − p) + (1− γn)
(
S(µn)zn − p

)
‖2

+2αn

〈
γL1xn − µL2S(µn)zn, J

(
γn(xn − p) + (1− γn)

(
S(µn)zn − p

)
+αn

(
γL1xn − µL2S(µn)zn

))〉
≤ γn‖xn − p‖2 + (1− γn)‖S(µn)zn − p‖2

−γn(1− γn)g(‖xn − S(µn)zn‖) + αnM2

≤ γn‖xn − p‖2 + (1− γn)‖zn − p‖2

−γn(1− γn)g(‖xn − S(µn)zn‖) + αnM2

≤ γn‖xn − p‖2 + (1− γn)‖xn − p‖2

−γn(1− γn)g(‖xn − S(µn)zn‖) + αnM2

= ‖xn − p‖2 − γn(1− γn)g(‖xn − S(µn)zn‖) + αnM2,

where

M2 = sup
n≥0

{
2
〈
γL1xn − µL2S(µn)zn, J

(
γn(xn − p) + (1− γn)

(
S(µn)zn − p

)
+αn

(
γL1xn − µL2S(µn)zn

))〉}
< ∞.

We obtain

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖S(µn)yn − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖yn − p‖2

≤ βn‖xn − p‖2 + (1− βn)
[
‖xn − p‖2

−γn(1− γn)g(‖xn − S(µn)zn‖) + αnM2

]
= ‖xn − p‖2 − (1− βn)γn(1− γn)g(‖xn − S(µn)zn‖) + (1− βn)αnM2.
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Then we get

(1− βn)γn(1− γn)g(‖xn − S(µn)zn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (1− βn)αnM2

≤ ‖xn − xn+1‖
(
‖xn − p‖+ ‖xn+1 − p‖

)
+(1− βn)αnM2.

By the conditions (C1),(C3),(C6) and (3.73), we have

lim
n→∞

g(‖xn − S(µn)zn‖) = 0.

It follows from the property of g that

lim
n→∞

‖xn − S(µn)zn‖ = 0. (3.76)

Since S(µn) is a nonexpansive and from the proof of Lemma 2.77, we get QCS(µn)zn =

S(µn)zn and observe that

‖yn − S(µn)zn‖

=
∥∥QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
− S(µn)zn

∥∥
≤

∥∥[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
− S(µn)zn

∥∥
=

∥∥αn

(
γL1xn − µL2S(µn)zn

)
+ γn(xn − S(µn)zn)

∥∥
≤ αn‖γL1xn − µL2S(µn)zn‖+ γn‖xn − S(µn)zn‖.

It follows from the conditions (C1), (C6) and (3.76), we get

lim
n→∞

‖yn − S(µn)zn‖ = 0. (3.77)

Since

‖xn − S(µn)xn‖ ≤ ‖xn − S(µn)zn‖+ ‖S(µn)zn − S(µn)xn‖

≤ ‖xn − S(µn)zn‖+ ‖zn − xn‖,

we have

lim
n→∞

‖xn − S(µn)xn‖ = 0.
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Now, we show that z ∈ F := F (S) ∩ V I(C, A). We can choose a sequence

{xnk
} of {xn} such that {xnk

} is bounded and there exists a subsequence {xnkj
}

of {xnk
} which converges weakly to z. Without loss of generality, we can assume

that xnk
⇀ z.

(I) First, we show that z ∈ F (S). Let µnk
≥ 0 such that µnk

→ 0 and
‖S(µnk

)xnk
−xnk

‖
µnk

→

0, k →∞. Fix s > 0, we can notice that

‖xnk
− S(s)z‖

≤
[s/µnk

]−1∑
i=0

∥∥S
(
(i + 1)µnk

)
xnk

− S(iµnk
)xnk

∥∥
+

∥∥S
(
[s/µnk

]µk

)
xnk

− S
(
[s/µnk

]µnk

)
z
∥∥

+
∥∥S

(
[s/µnk

]µnk

)
z − S(s)z

∥∥
≤ [s/µnk

]‖S(µnk
)xnk

− xnk
‖+ ‖xnk

− z‖+
∥∥S

(
s− [s/µnk

]µnk

)
z − z

∥∥
≤ s

‖S(µnk
)xnk

− xnk
‖

µnk

+ ‖xnk
− z‖+

∥∥S
(
s− [s/µnk

]µnk

)
z − z

∥∥
≤ s

‖S(µnk
)xnk

− xnk
‖

µnk

+ ‖xnk
− z‖+ max{‖S(µ)z − z‖ : 0 ≤ µ ≤ µnk

}.

For all k ∈ N, we have

lim sup
k→∞

‖xnk
− S(s)z‖ ≤ lim sup

k→∞
‖xnk

− z‖.

Since a Banach space E with a weakly sequentially continuous duality mapping

satisfies the Opial’s condition, this implies S(s)z = z.

(II) Next, we show that z ∈ V I(C, A). From the assumption, we see that the control

sequence {λnk
} is bounded. So, there exists a subsequence {λnkj

} converges to λ0.

We may assume, without loss of generality, that λnk
⇀ λ0. Observe that

‖QC(xnk
− λ0Axnk

)− xnk
‖ ≤ ‖QC(xnk

− λ0Axnk
)− ynk

‖+ ‖ynk
− xnk

‖

≤ ‖(xnk
− λ0Axnk

)− (xnk
− λnk

Axnk
)‖

+‖xnk
− S(µnk

)znk
‖+ ‖S(µnk

)znk
− ynk

‖

≤ M‖λnk
− λ0‖+ ‖xnk

− S(µnk
)znk

‖

+‖S(µnk
)znk

− ynk
‖,
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where M is as appropriate constant such that M ≥ supn≥1{‖Axn‖}. It follows

from (3.76), (3.77) and λnk
⇀ λ0 that

lim
k→∞

‖QC(xnk
− λ0Axnk

)− xnk
‖ = 0.

We know that QC(I − λ0A) is nonexpansive and it follows from Lemma 2.69 that

z ∈ F (QC(I−λ0A)). By using Lemma 2.68, we obtain that z ∈ F (QC(I−λ0A)) =

V I(C, A).

Therefore, from (I) and (II), we conclude that z ∈ F := F (S) ∩ V I(C, A).

Next, we show that lim supn→∞〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉 ≤ 0, where x∗

is the solution of the variational inequality (2.20). Since the Banach space E has

a weakly sequentially continuous generalized duality mapping Jq : E → E∗ and

ynk
⇀ z, we obtain that

lim supn→∞〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉

= lim
k→∞

〈γL1x
∗ − µL2x

∗, Jq(ynk
− x∗)〉

= 〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0. (3.78)

Finally, we show that {xn} converges strongly to x∗. Setting un = αnγL1xn+

γnxn + ((1− γn)I − αnµL2)S(µn)zn,∀n ≥ 0, it follows from Lemma 2.76, 2.78 and

2.79 that

‖yn − x∗‖q = 〈QCun − un, Jq(yn − x∗)〉+ 〈un − x∗, Jq(yn − x∗)〉

≤ 〈un − x∗, Jq(yn − x∗)〉

= 〈[(1− γn)I − αnµL2][S(µn)zn − x∗], Jq(yn − x∗)〉

+αn〈γL1xn − µL2x
∗, Jq(yn − x∗)〉+ γn〈xn − x∗, Jq(yn − x∗)〉

≤ (1− γn − αnτ)‖S(µn)zn − x∗‖‖yn − x∗‖q−1

+γn‖xn − x∗‖‖yn − x∗‖q−1 + αn〈γL1xn − γL1x
∗, Jq(yn − x∗)〉

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉
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≤ (1− γn − αnτ)‖xn − x∗‖‖yn − x∗‖q−1

+γn‖xn − x∗‖‖yn − x∗‖q−1 + αnγL‖xn − x∗‖‖yn − x∗‖q−1

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉

≤ [1− αn(τ − γL)]‖xn − x∗‖‖yn − x∗‖q−1

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉

≤ [1− αn(τ − γL)]
[1

q
‖xn − x∗‖q +

q − 1

q
‖yn − x∗‖q

]
+αn〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉,

which implies that

‖yn − x∗‖q ≤ 1− αn(τ − γL)

1 + (q − 1)αn(τ − γL)
‖xn − x∗‖q

+
qαn

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉

≤ [1− αn(τ − γL)]‖xn − x∗‖q

+
qαn

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉.

Therefore,

‖xn+1 − x∗‖q

≤ βn‖xn − x∗‖q + (1− βn)‖S(µn)yn − x∗‖q

≤ βn‖xn − x∗‖q + (1− βn)‖yn − x∗‖q

≤ βn‖xn − x∗‖q + (1− βn)

[
[1− αn(τ − γL)]‖xn − x∗‖q

+
qαn

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉

]
= [1− αn(τ − γL)(1− βn)]‖xn − p‖q

+
qαn(1− βn)

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉. (3.79)

Now, from (C1), (3.78) and applying Lemma 2.75 to (3.79), we get ‖xn − x∗‖ → 0

as n →∞. Therefore, the sequence {xn} converges strongly to x∗ ∈ F . The proof

is complete. 2
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Corollary 3.83. Let C be a sunny nonexpansive retract and nonempty closed con-

vex subset of a 2-uniformly smooth and uniformly convex Banach space E which

admits a weakly sequentially continuous generalized duality mapping J : E → E∗

with the best smooth constant K. Let QC be a sunny nonexpansive retraction from E

onto C, A : C → E be an β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0}

be a nonexpansive semigroup from C into itself, L1 : C → E be a L-Lipschitzian

mapping with constant L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly

accretive operator with constant κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1),

{µn} ⊂ (0,∞) such that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < η
K2κ2 , 0 < a ≤ λn ≤ b <

β
K2 , 0 ≤ γL < τ where τ = µ(η − K2µκ2) and F := F (S) ∩ V I(C, A) 6= ∅. Let

{xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
,

xn+1 = βnxn + (1− βn)S(µn)yn,

which satisfy the conditions (C1)-(C6) in Theorem 3.82. Then {xn} converges

strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, J(z − x∗)〉 ≤ 0,∀z ∈ F.

Corollary 3.84. Let C be a sunny nonexpansive retract and nonempty closed con-

vex subset of a q-uniformly smooth and uniformly convex Banach space E which

admits a weakly sequentially continuous generalized duality mapping Jq : E → E∗.

Let QC be a sunny nonexpansive retraction from E onto C, A : C → E be an

β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0} be a nonexpansive semi-

group from C into itself, L1 : C → E be a L-Lipschitzian mapping with constant

L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with

constant κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such

that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1 where cq is a positive real num-

ber, 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q
) and
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F := F (S) ∩ V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)

1
tn

∫ tn
0

S(s)znds
]
,

xn+1 = βnxn + (1− βn) 1
tn

∫ tn
0

S(s)ynds,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.82 and assume that

lim
n→∞

sup
x∈C̃

∥∥∥∥ 1

tn+1

∫ tn+1

0

S(s)xds− 1

tn

∫ tn

0

S(s)xds

∥∥∥∥ = 0,

C̃ bounded subset of C, limn→∞ µn = ∞ and limn→∞
µn

µn+1
= 1. Then {xn} con-

verges strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0,∀z ∈ F.

Corollary 3.85. Let C be a sunny nonexpansive retract and nonempty closed con-

vex subset of a q-uniformly smooth and uniformly convex Banach space E which

admits a weakly sequentially continuous generalized duality mapping Jq : E → E∗.

Let QC be a sunny nonexpansive retraction from E onto C, A : C → E be an

β-inverse-strongly accretive operator, L1 : C → E be a L-Lipschitzian mapping

with constant L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly accre-

tive operator with constant κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1) such

that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1 where cq is a positive real num-

ber, 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q
) and

F := V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)zn

]
,

xn+1 = βnxn + (1− βn)yn,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.82. Then {xn}

converges strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0,∀z ∈ F.
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Proof. Taking µn = 0 in Theorem 3.82, we can conclude the desired conclusion

easily. The proof is complete.



CHAPTER V

CONCLUSIONS

1. Let H be a real Hilbert space, T, S, K : H −→ H a nonexpansive mapping

satisfy the condition (A′′) with Ω := F (T ) ∩ F (S) ∩ F (K) ∩MEP (F, ϕ) 6= ∅. Let

f : H −→ H an ηf -strongly monotone and kf -Lipschitzian mapping, g : H −→ H

an ηg-strongly monotone and kg-Lipschitzian mapping, h : H −→ H an ηh-strongly

monotone and kh-Lipschitzian mapping. For any x0 ∈ H, {xn} is defined by
zn = cnxn + (1− cn)Kαn

h Trnxn,

yn = bnxn + (1− bn)Sβn
g zn,

xn+1 = anxn + (1− an)T
λn+1

f yn, ∀n ≥ 0,

(3.80)

where

T
λn+1

f x = Tx− λn+1µff(Tx), ∀x ∈ H,

Sβn
g x = Sx− βnµgg(Sx), ∀x ∈ H, (3.81)

Kαn
h x = Kx− αnµhh(Kx), ∀x ∈ H,

and {an} ⊂ (0, 1), {bn} ⊂ (0, 1), {cn} ⊂ (0, 1) and {λn} ⊂ [0, 1), {βn} ⊂ [0, 1),

{αn} ⊂ [0, 1), {rn} ⊂ (0,∞) satisfying the following conditions:

(i) α ≤ an ≤ β, α ≤ bn ≤ β, α ≤ cn ≤ β for some α, β ∈ (0, 1),

(ii)
∑∞

n=1 λn < ∞,
∑∞

n=1 βn < ∞ and
∑∞

n=1 αn < ∞,

(iii) 0 < µf < 2ηf/k
2
f , 0 < µg < 2ηg/k

2
g and 0 < µh < 2ηh/k

2
h,

(iv) lim infn−→∞ rn > 0.

Then {xn} converges strongly to a point x∗ ∈ Ω.
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2. Let H be a real Hilbert space, T, S, K : H −→ H a nonexpansive mapping

satisfy the condition (A′′) with F (T ) ∩ F (S) ∩ F (K) 6= ∅. Let f : H −→ H an

ηf -strongly monotone and kf -Lipschitzian mapping, g : H −→ H an ηg-strongly

monotone and kg-Lipschitzian mapping, h : H −→ H an ηh-strongly monotone and

kh-Lipschitzian mapping. For any x0 ∈ H, {xn} is defined by
zn = cnxn + (1− cn)Kαn

h xn,

yn = bnxn + (1− bn)Sβn
g zn,

xn+1 = anxn + (1− an)T
λn+1

f yn, ∀n ≥ 0,

(3.82)

where

T
λn+1

f x = Tx− λn+1µff(Tx), ∀x ∈ H,

Sβn
g x = Sx− βnµgg(Sx), ∀x ∈ H, (3.83)

Kαn
h x = Kx− αnµhh(Kx), ∀x ∈ H,

and {an} ⊂ (0, 1), {bn} ⊂ (0, 1), {cn} ⊂ (0, 1) and {λn} ⊂ [0, 1), {βn} ⊂ [0, 1),

{αn} ⊂ [0, 1) satisfying the following conditions:

(i) α ≤ an ≤ β, α ≤ bn ≤ β, α ≤ cn ≤ β for some α, β ∈ (0, 1),

(ii)
∑∞

n=1 λn < ∞,
∑∞

n=1 βn < ∞ and
∑∞

n=1 αn < ∞,

(iii) 0 < µf < 2ηf/k
2
f , 0 < µg < 2ηg/k

2
g and 0 < µh < 2αh/k

2
h.

Then {xn} converge strongly to a point x∗ ∈ F (T ) ∩ F (S) ∩ F (K).

3. Let C be a sunny nonexpansive retract and nonempty closed convex subset

of a q-uniformly smooth and uniformly convex Banach space E which admits a

weakly sequentially continuous generalized duality mapping Jq : E → E∗. Let QC

be a sunny nonexpansive retraction from E onto C, A : C → E be an β-inverse-

strongly accretive operator, S = {S(s) : s ≥ 0} be a nonexpansive semigroup from

C into itself, L1 : C → E be a L-Lipschitzian mapping with constant L ≥ 0 and
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L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant

κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such that {λn} ⊂

[a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1 where cq is a positive real number, 0 < a ≤ λn ≤

b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η− cqµq−1κq

q
) and F := F (S)∩V I(C, A) 6= ∅.

Let {xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
,

xn+1 = βnxn + (1− βn)S(µn)yn,

(3.84)

which satisfy the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=0 αn = ∞; and limn→∞ |αn+1 − αn| = 0;

(C2) limn→∞ |λn+1 − λn| = 0, lim infn→∞ λn > 0;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C4) limn→∞ µn = 0;

(C5) limn→∞ supx∈C̃ ‖S(µn+1)x− S(µn)x‖ = 0, C̃ bounded subset of C;

(C6) limn→∞ |γn+1 − γn| = 0, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then {xn} converges strongly to x∗ ∈ F which also solves

4. Let C be a sunny nonexpansive retract and nonempty closed convex subset

of a 2-uniformly smooth and uniformly convex Banach space E which admits a

weakly sequentially continuous generalized duality mapping J : E → E∗ with the

best smooth constant K. Let QC be a sunny nonexpansive retraction from E onto

C, A : C → E be an β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0}

be a nonexpansive semigroup from C into itself, L1 : C → E be a L-Lipschitzian

mapping with constant L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly

accretive operator with constant κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1),
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{µn} ⊂ (0,∞) such that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < η
K2κ2 , 0 < a ≤ λn ≤ b <

β
K2 , 0 ≤ γL < τ where τ = µ(η − K2µκ2) and F := F (S) ∩ V I(C, A) 6= ∅. Let

{xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
,

xn+1 = βnxn + (1− βn)S(µn)yn,

which satisfy the conditions (C1)-(C6) in Theorem 3.82. Then {xn} converges

strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, J(z − x∗)〉 ≤ 0,∀z ∈ F.

5. Let C be a sunny nonexpansive retract and nonempty closed convex subset

of a q-uniformly smooth and uniformly convex Banach space E which admits a

weakly sequentially continuous generalized duality mapping Jq : E → E∗. Let QC

be a sunny nonexpansive retraction from E onto C, A : C → E be an β-inverse-

strongly accretive operator, S = {S(s) : s ≥ 0} be a nonexpansive semigroup from

C into itself, L1 : C → E be a L-Lipschitzian mapping with constant L ≥ 0 and

L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant

κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such that {λn} ⊂

[a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1 where cq is a positive real number, 0 < a ≤ λn ≤

b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η− cqµq−1κq

q
) and F := F (S)∩V I(C, A) 6= ∅.

Let {xn} be the sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)

1
tn

∫ tn
0

S(s)znds
]
,

xn+1 = βnxn + (1− βn) 1
tn

∫ tn
0

S(s)ynds,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.82 and assume that

lim
n→∞

sup
x∈C̃

∥∥∥∥ 1

tn+1

∫ tn+1

0

S(s)xds− 1

tn

∫ tn

0

S(s)xds

∥∥∥∥ = 0,
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C̃ bounded subset of C, limn→∞ µn = ∞ and limn→∞
µn

µn+1
= 1. Then {xn} con-

verges strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0,∀z ∈ F.

6. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a

q-uniformly smooth and uniformly convex Banach space E which admits a weakly

sequentially continuous generalized duality mapping Jq : E → E∗. Let QC be a

sunny nonexpansive retraction from E onto C, A : C → E be an β-inverse-strongly

accretive operator, L1 : C → E be a L-Lipschitzian mapping with constant L ≥ 0

and L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant

κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1) such that {λn} ⊂ [a, b] ⊂ (0, 1),

0 < µ < ( qη
cqκq )

1
q−1 where cq is a positive real number, 0 < a ≤ λn ≤ b < ( qβ

cq
)

1
q−1 ,

0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q
) and F := V I(C, A) 6= ∅. Let {xn} be the

sequences defined by x1 ∈ C and
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)zn

]
,

xn+1 = βnxn + (1− βn)yn,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.82. Then {xn}

converges strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0,∀z ∈ F.
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