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Chapter 1

Introduction

Quantum difference operators (g-difference operators) have extensive ap-
plications in diverse disciplines such as orthogonal polynomials, basic hyper-
geometric functions, combinatorics, the calculus of variations, mechanics and
the theory of relativity. For a detailed description of such operators, we refer a
text Kac and Cheung [1].

In classical quantum calculus (g-calculus), the g-derivative was first formu-
lated by Jackson [2] in 1910 as

t
:1—”, 0<g<1, te(000) (1.1)

The above definition does not remain valid for impulse points t, k € Z, such
that ¢, € (qt,t). On the other hand, this situation does not arise for impulsive
equations on ¢-time scales as the domains consist of isolated points covering
the case of consecutive points of ¢ and gt with t; & (gt,t). Due to this reason,
the subject of impulsive quantum difference equations on dense domains could
not be studied. In [3], the authors modified the classical quantum calculus for
obtaining the first and second order impulsive quantum difference equations
on a dense domain [0,7] € R through the introduction of a new ¢-shifting
operator defined by ,®,(m) = gm + (1 — ¢)a, m,a € R. If a < m, then
a < o®,(m) < m. Let ty,tr+1 be consecutive impulse points and [t;, tx1] be a
dense subset of R. For t € [ty, tx41], we have ¢, ®,(t) € (tx, tj41). The main idea
was to apply quantum calculus only on a sub-interval (¢, t11) and then combine
all intervals through impulsive conditions. In [4], the authors used the ¢-shifting
operator to develop the new concepts of fractional quantum calculus such as the
Riemann-Liouville fractional derivative and integral and their properties. They
also formulated the existence and uniqueness results for some classes of first and
second orders impulsive fractional ¢-difference equations.

Impulsive differential equations serve as basic models to study the dynamics



of processes that are subject to sudden changes in their states. Recent devel-
opment in this field has been motivated by many applied problems arising in
control theory, population dynamics and medicines. For some recent works on
the theory of impulsive differential equations, we refer the reader to the mono-
graphs [5]-[7].

Recently, in [8], the authors applied the concepts of quantum calculus devel-
oped in [3] to study a boundary value problem of ordinary impulsive g-integro-
difference equations of the form:

(D2a(t) = f( o), (Sya)(B), te = [0,T], t £,
¢ (1.2)
D, x(t)) — Dy, x(ty) = I} (z(ty)), k=1,2,...,m,

L 2(0) + Dyx(0) =0, «(T)+ D, x(T) =0,

WhereO—t0<t1<t2< <ty <<ty <t =T, f: xR = R,
(Sg.)(t ft qus, te(tk,tkﬂ] E=0,1,2,....m, ¢:JxJ—
0,00) is a contmuous functlon, I, I; € C(R,R), Az(t) = x(t) —x(ty) for k =
L,2,...,m, z(t)) = limyox(ty, + h) and 0 < g < 1 for k=0,1,2,...,m. The
second order gj-difference appeared in (1.2) is defined by DZ x = D, (Dg, ),
where the first order g,-difference operator is

2(t) — 3y, g, (1)) :
>V, = M. A, [Pt Deri). 1.3
walt) = T, Dyalt) = lm Dya(®). (1)
Some existence and uniqueness results for problem (1.2) were proved by using
a variety of fixed point theorems. More recently, the authors discussed the
existence of solutions for Caputo-Hadamard type fractional impulsive hybrid
systems with nonlinear fractional integral conditions in [9].

The aim of this research project is to present a new definition of Caputo
type quantum difference operator and investigate the existence criteria for the
solutions of an impulsive fractional g-integro-difference equation involving this
operator supplemented with separated boundary conditions given by

(¢ Da(t) = f(ta(t), s ls2(t)), t€J, C[0,T], t &,
Az(ty) =2(t) — z(te) = or (2(tr), k=1,2,...,m,
e Dogx(t) — N f:v(tk) =pr(z(ty)), k=1,2,...,m,

\ )\11}(0) + )\2 ODquL'(O) = O, fll'(T) .. 52 ?mD’qy:nnT(T> = O,

(1.4)

where 0 = tg < t; < -+« <ty < b1 = T, §{ D denotes the Caputo g-
fractional derivative of order ¢y € {ag, v} on Ji, 1 <y, <2, 0< v <1,0<



a <1, Jy = [O,tl], Jp = (tk,tk+1], k=0,1,...,m,J = [O,T], fe C(JXRZ,R),
ok, pr € C(RyR), k=1,2,...,m and tquﬁ,f denotes the Riemann-Liouville q-
fractional integral of order 8 > 0 on J, k = 0,1,2,...,m. The key tools to
study the given problem are fixed point results due to Krasnoselskii and O’Regan
which require the segregation of an operator into a sum of two operators. Some
new notations of quantum constants are introduced to facilitate the process of
computing.

In addition, we also study the following anti-periodic boundary value prob-
lem of impulsive fractional g-difference equation

(¢ D%a(t) = f(t,x(t)), tE S C[0,T), t 4,
Ax(ty) = z(t}) — a(ty) = i <tk‘1[£f_*11x(tk)> . k=1,2,....m,

tquk:E(tD — toy Do, (k) = ¢}, (tk_lfg:__lliﬂ(tk)> , k=1,2,....,m,
( 2(0) = =2(T),  0Dgz(0) = =, Dg,, x(T),

(1.5)
where 0 =ty < &1 < -+ <ty < lpyr = T, § Dgk denotes the Caputo gy~
fractional derivative of order oy on Jy, 1 < ap < 2,0 < qx < 1, Ji, = (tx, tgr1),
Jo=10,t1], Kk = 0,1,...,m, J =1[0,T], f € C(J x R/R), ¢, ¢} € C(R,R),
k ety .. m Sl 5: denotes the Riemann-Liouville ¢.-fractional integral of
order By, vx > 0on J, k=0,1,2,...,m —1.

In recent years, the topic of ¢-calculus has attracted the attention of several
researchers and a variety of new results on g-difference and fractional g-difference
equations can be found in a series of books [10]-[12] and papers [13]-[31], and
the references cited therein. Some applications of g-calculus have appeared in
[32]-[36], but these applications do not take into account the impulsive effects.
The results obtained in this research project will be useful to extend the study
of these applications with impulse conditions.



Chapter 2

Basic Concepts and Preliminaries

The aim of this chapter is to give some definitions and properties of the notions
of g-derivative and g-integral of the previous section on finite intervals.

2.1 Quantum Calculus on Finite Intervals

For a fixed k € NU{0} let Ji := [tg, tx+1] C R be an interval and 0 < g, < 1 be
a constant. We define gi-derivative of a function f : J, — R at a point ¢t € Jj
as follows:

Definition 2.1.1 Assume f : J, — R is a continuous function and let t € Jj.
Then the expression

f(t) — flant + (1 — qr)te)
(1 —qu)(t —t)

15 called the qi-derivative of function f att.

D, f(t) = dtF e, Dy f(te) = tllrg D, f(t), (2.1)

We say that f is gg-differentiable on Jj, provided D,, f(t) exists for all t € J.
Note that if ¢, = 0 and ¢, = ¢ in (2.1), then Dy, f = D, f, where D, is the
g-derivative of the function f(t) defined in Definition ??.

1
Example 2.1.2 Let f(¢) =t for t € [1,4] and ¢ = 3 Now, we consider

= (gt + (1 — qp)tr)’
(1 —qe)(t = tx)
(1 4+ qe)t® — 2qtit — (L= qi)t;
t— 1,
3t2 =2t =1

T, 7@’_—1)—‘, t e (1,4]

Dy, [ (1)
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and lim,_, D, f(t) = 2, if t = 1. In particular, D%f(?)) = 5 can be interpreted
f3) - f(2)

3—2
Example 2.1.3 In classical g-calculus, we have D t" = [n],t"' where [n], =
1—q"
l—q
f(t) = (t — tk)n, t € Ji, then

Dqkf(t) =

as a difference quotient

However, g-calculus gives Dy, (t — t;)" = [n], (t — tx)""'. Indeed,

(t —t)" — (gt + (1 — qi)tx — t)"
(1 —qu)(t —tx)
(t—t)" — gy (t —tg)"
(1= gu)(t —tx)
A ek (L d 0 L

I 4
L —qr
Theorem 2.1.4 [3] Assume f,g: J, — R are q.-differentiable on Jy. Then:
(i) The sum f+ g: Jp — R is q-differentiable on Jy, with
Dy, (f(£) +9(t)) = Dg, f(t) + Dg,g(2).
(ii) For any constant o, af : Ji, = R is qx-differentiable on Jy, with
Dy, (af)(t) = aDy, f(1).
(iii) The product fg : Jy — R is qg-differentiable on Jy with

DQk(fg)(t) - f(t)Dqu(t) +g(arnt + (1 Qk)tk)Dqkf(t)
o g(t)DQkf(t) + f(th -+ (1 N qk)tk)Dng(t)'

where [n],,

(1) If g(t)g(qit + (1 — qr)tx) # 0, then § is qu-differentiable on J, with

b, (i) (0 — 90D, FE) = [(O)Dy9(0)
g 9(t)g(ant + (1 = qi)tr)
Remark 2.1.5 In Example 2.1.3 we recall that in ¢-difference, if f(¢) = ¢t™ then
D,t"™ = [n]t"~'. We cannot have a simple formula for gi-difference. Using the
derivative of product we have for some n :
Do 0 )02,
Dyt> = Dy (t-t) =1 +aqg)t+ (1 —aq)ts,
Dyt* = Dy (t? 1) = (L +qu + )t + (1@ —2q)tt + (1 — q1)*t3,
Dyt' = Dy (1" ) = (L ge+ gt + g)t* + (1 + @ + G — 3¢ tat?
+ (1 ax — 5a; + 3g)Et + (1 — ar)’t].




In addition, we should define the higher ¢;-derivative of functions.

Definition 2.1.6 Let f : J. — R is a continuous function, we call the second-
order qi-derivative ngf provided Dy, [ is q-differentiable on Jj, with ngf =
Dy (Dy f) : Je = R. Similarly, we define higher order qy.-derivative Dy = Jp, —
R.

For example, if f : J, — R, then we have

D f(t) = Dy (Dy f(t))
DQkf(t> % D‘ka(qkt ¥ (1 W Qk)tk>
(1 —aqe)(t — tk)

FO=flapt+(A—ai)ty)  [lat+(—agr)te)—f(ggt+(1—g7)tx)
(1—aqx)(t—tx) (1=gp)(t—tx)
(LA
f@) —2f(qet + (1 — qr)te) + fgpt + (1 — q)te)

= (1 _Qk:)2(t_tk)2 ) t?’étk,

and D? f(tx) = lim D2 f(t).

t—=1tg

To construct the gg-antiderivative F'(t), we define a shifting operator by
E, F(t) = F(ast + (1 — qx)ty).
It is easy to prove by using mathematical induction that
Eq F(t) = Eq (B, ' F)(t) = F(qgt + (1= qp)te),
where n € N and E F(t) = F(t).
Then we have by Definition 2.1.1 that
F(t) — F(get + (1 — gp)t 1-F,
( ) (Qk +( Qk) k) - qk F(t) » f(t)
(1= i) (¢ — 1) (1= q)(t —tr)

Therefore, the gi-antiderivative can be expressed as

F(t) = 1= (1= g)(6 = )7 (8)):

9k

Using the geometric series expansion, we obtain

F(t)=(1—q) Z By (t=te)f(t)

n=0

[V]8

= =) (gt + (1 —agp)te — ti) flagt + (1= gi)tx)

Il
=]

T

=1 S g g 1 gyt (22)

n=0



It is clear that the above calculus is valid only if the series in the right-hand
side of (2.2) is convergent.

Definition 2.1.7 Assume f : Jp — R is a continuous function. Then the qy-
integral is defined by

/f dos= (= g)(t—t) S Giflgt+ (1 —ght) (29

n=0

fort € Ji. Moreover, if a € (tg,t) then the definite qy-integral is defined by

/ F(8)ds = / F($)ds = | Hs)ys

= (=gt —t) > aiflapt+ (1 —qp)tx)

—(1=ae)(a—t) > apflgra+ (1 —qp)ty).

n=0
Note that if £, = 0 and ¢, = ¢, then (2 3) reduces to g-integral of a function
f(t), deﬁnedby/ f(s)d,s =(1—q)t Zq”f q"t) for te€ [0,00).
n=0

Example 2.1.8 Let f(¢) =t for t € Ji, then we have

i i
/ )0, 2 / sy 8
ti ty

= (1—gp)(t=t) Zq (gt + (1 — q)tr)

(t T tk)(t 1 qktk)
L + gy ’

Theorem 2.1.9 [3] Fort € Jy, the following formulas hold:

(i) Dy / £(8)das = F(8);
(ii) / D, f(s)d,s = f(t);

(iii) / Dy f(s)dy. 5 = £ ()= F(@) fora & (e, D).
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Theorem 2.1.10 /3] Assume f,g : Jy — R are continuous functions, o € R.
Then, fort € Jy,

(z)/ ) + s qus—/f qus+/t:g< )iy s
i) /t:(ozf)(é’)qus _ /t:f(s)qus;

(i) / F6)Dug(S)das = (£ = [ glars + (1 = 00 Dauf ()5

tx

Theorem 2.1.11 (Reversing the order of qy-integration)[3]. Let f € C(Ji, R),
then the following formula holds

//f qurquS—// (1)dg, Sy, 1
qrr+(1—qr)t

2.2 Fractional Quantum Calculus on Finite Intervals

This section is devoted to some basic concepts such as g-shifting operator,
Riemann-Liouville fractional g-integral and g¢-difference on a given interval [4].

We define a ¢-shifting operator as
a®q(m) = gm+ (1 —q)a. (2.4)
For any positive integer k, we have
a(I)Z(m) = a(I)];_l (a®,(m)) and «2%(m) = m.

The power of ¢-shifting operator is defined as
k—1
a(n — m)é()) =1, (- m)l(]k) > H (n —o®;(m)), ke NU{oco}.

More generally, if v € R, then

S (7 —n”*)H [ — o®!(m/n)
1—aq>wrZ (m/n)

=0

The g-derivative of a function f on interval [a, b] is defined by

f(t) = Fa®y(1))
I=g)(t—a)

(:Duf) (1) = t#a and (D,f)(a) = lim(D,f) (1)



and ¢-derivative of higher order are given by

(aD2f>(t) = f<t> and (aD§f>(t) = aDs_l(aDQf)(t)7 keN.

The g-derivative of a product and ratio of functions f and g on [a, b] are

Dy(f9)(t) = [(£)aDqg(t) + g(a®q(t))aDqf ()
= 90Dy f (1) + f(a®q(t))aDqy(t),

and

where g(t)g(a®y(t)) 7# 0.

The g-integral of a function f defined on the interval [a, b] is given by

:/ [($)ads = U= )t = @) Y a'f(2y(D). tEad], (25)

with
(L)) = f(t) and (I f)(t) = oIy~ (o f)(8), k€N
The fundamental theorem of calculus applies to the operator ,D, and ./, that
is,
(aDgalef)(t) = f(2),
and if f is continuous at t = a, then
(a[anQf)<t) 3 f(t) - f(a)
The formula for g-integration by parts on interval [a, 0] is

b

a

/ F(5)aDag(s)adys = (F0)(1)] / 0(uBo(5))aDaf (5)adlys

Let us now define Riemann-Liouville fractional ¢-derivative and g¢-integral
on interval [a,b] and outline some of their properties [4].

Definition 2.2.1 The fractional q-derivative of Riemann-Liouville type of order
v >0 on interval [a,b] is defined by (oDg f)(t) = f(t) ‘and

(Dg 1) = (Dgaly™" F)(t); v >0,

where [ is the smallest integer greater than or equal to v.
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Definition 2.2.2 Let « > 0 and f be a function defined on [a,b]. The fractional
q-integral of Riemann-Liouville type is given by (a]gf)( ) = h(t) and

1
I'y(a)

(g F)(E) = / ot = a®g(8))5* D f(8)adys, >0, t€[a,b].

From [4], we have the following formulas

L(B+1)

oDy (t — a)f = m(zﬁ —a)™, (2.6)
tape TEBED (.
Jo(t—a)’ = Fq(5+o¢—|—1)(t )t (2.7)

Lemma 2.2.3 Let o, f € RT and f be a continuous function on [a,b], a >
0. The Riemann-Liouville fractional g-integral has the following semi-group
property

NI — Jo 7B = e

ID L0 () = oI3o 1 f(t) = oI777 f (1)

Lemma 2.2.4 Let f be a g-integrable function on [a,b]. Then the following equal-
ity holds
oDy IS f() = f(1), for >0, t € [a,bl.

Lemma 2.2.5 Let a > 0 and p be a positive integer. Then for t € [a,b] the
following equality holds

p—1 - aerk

I3aDgf(t) = oaDgaIg £ (1)

Dk
D;f(a).
Ty a—l—k: p+ 1)1

We define Caputo fractional g-derivative as follows.

Definition 2.2.6 The fractional g-derivative of Caputo type of order o > 0 on
interval [a,b] is defined by (D) f)(t) = f(t) and

(@Dg F)(t) = (ody™ " Dgf)(E), a >0,
where n 1s the smallest integer greater than or equal to «.

Lemma 2.2.7 Let o > 0 and n be the smallest integer greater than or equal to
a. Then fort € [a,b] the following equality holds

n—1

]’aCDaf
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Proof. From Lemma 2.2.5, for &« = p = m, where m is a positive integer, we
have

WD) = DI (1) -

Then, by Definition 2.2.6, we have

dgaDg f(t) = olfaly™%aDg f(t)
= 17Dy f(t)

2.3 Impulsive ¢;-difference equations

Let J = [O,T], Jo = [t0>t1]7 Jk = (tk>tk+1] for k = 1,2,. Lo, Mm. Let PC(J,R) =
{z: J = R: z(t) is continuous everywhere except for some t; at which z(¢;)
and x(t, ) exist and z(t, ) = x(t;), k = 1,2,...,m}. PC(J,R) is a Banach space
with the norms ||z||pc = sup{|=(¢)|; t € J}.

2.3.1 First-order impulsive ¢,-difference equations

In this subsection, we study the existence and uniqueness of solutions for the
following initial value problem for first-order impulsive g,-difference equation

Dqu(t):f(t,x(t)), L€ J, t # ty,

Doty = I (2(6)) - om 1.2, -, (2.8)
x(0) = o,
WhereIoeR,0:t0<t1<t2<"'<tk<"‘<

i,
f:J xR = Ris a continuous function, Iy € C(R,R), Ax(tx) = x(
Ek=1,2,....mand 0 < qp <1fork=0,1,2,...,m.
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Lemma 2.3.1 /3] If x € PC(J,R) is a solution of (2.8), then for any t € Jy,
k=0,1,2,....m,

o(t) = w0+ ) fsrv))qkls

O<tp<t k-1

with Yo _o() = 0, is a solution of (2.8). The converse is also true.

Theorem 2.3.2 [3] Assume that the following assumptions hold:
(Hy) f:J xR —= R is a continuous function and satisfies

|f(tz) = fty)| < Lz —yl, L>0,VieJ zyckR,;
(Ho) Iy :R—= R, k=1,2,...,m, are continuous functions and satisfy
[ In(2) — In(y)| < Mz —y|, M >0, Vo,y R

If
LT +mM <§<1,

then the nonlinear impulsive qi-difference initial value problem (2.8) has a unique
solution on J.

Example 2.3.3 Consider the following first-order impulsive g,-difference initial
value problem

- e!z()] r _k
Dﬁx(t) SRV YT teJ=[0,1, t#£t,= i
x 2.10
Az(ts) :%, = Voo, (2.10)
x(0) =0.

Here ¢, = 1/(2+ k), k=0,1,2,...,9, m =9, T = 1, f(t,z) = (e |z|)/((t +
V52 (L |of)) and Ii(x) = Ja|/(12+ |z]). Since |f(t,2) ~ f(t,y)] < (1/5)]z — ]
and |Ii.(z) — I1.(y)] < (1/12)|z —yl, then, (H,), (H2) are satisfied with L = (1/5),
= (1/12). We can show that
Te0) 19
LT e e R
TS T 2t

Hence, by Theorem 2.3.2; the initial value problem (2.10) has a unique solution
on [0, 1].
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2.3.2 Second-order impulsive ¢;-difference equations

In this subsection, we investigate the second-order initial value problem of im-
pulsive gi-difference equation of the form

D2 x(t) = f(t,z(t)), teJ, t#t,
ALL'(tk) :[k (l’(tk) N = 1,2,...,m,

(2.11)
Dy x(t)) — Dy, x(ty) = I} (z(ty)), k=1,2,...,m,
2(0) = o,  Dgz(0) = 5,
where a, 8 € R, 0 = tg <t <ty < -+ < tp < - <ty <ty = T,

f: JxR — R is a continuous function, Iy, I} € C(R,R), Az(ty) = x(t}) —z(ty)
fork=1,2,....mand 0 < qx <1for k=0,1,2,...,m.

Lemma 2.3.4 /3] The unique solution of problem (2.11) is given by

2(t) = o+ Bt

+3 ( /(t — @15 — (1= g )t 1) (5, 2(5))dge 5+ I <x<tk>>)
» [Z | < / F(5,2(5))dgy5 + I} <x<tk>>>]

SO ( / £, 2(8)dgrs + 11 <x<tk>>)

+ /t:k(t — qks — (L—qu)tr) f (s, 2(s))dq, s,

(2.12)
with y.4(-) = 0.

Next, we prove the existence and uniqueness of a solution to the initial value
problem (2.11). We shall use the Banach’s fixed point theorem to accomplish
this.

Theorem 2.3.5 [3] Assume that (Hy) and (Hy) hold. In addition we suppose

that:

(H3) I} :R—=R, k=1,2,...,m, are continuous functions and satisfy
) — L) < Mo = yl, M50, Yo,y € R.

If

0:= L1+ Tve+v3) + mM + (mT + vg) M* < § < 1,
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where
V1IZM, Z tr —th-1) —Ztk(tk_tkfl)a V4=Ztk,
k=1 1+ gy k=1 k=1 k=1

then the initial value problem (2.11) has a unique solution on J.

Example 2.3.6 Consider the following second-order impulsive g,-difference ini-
tial value problem

—sin?t
D% a(t) = (7ft>2(1|f<|21(t)|), teJ=[01], t£t, = 1—%,
Ax(tk):%, A2 4 (21
D a(tt) = Do wlty) = %tanl <%x(tk)) L k=1.2,....0,
z(0) =0, sz(O) 0.
Here g, = 2/ (34 k), k 9, m=9T=1, f(t, ) = (e t|z|)/((T+

H2(1 + |z|), I(z) = |x|/( (6 + |z])) and [}(x) = (1/9)tan"'(z/5). Since
|f(t z) — f(t,y)| < (1/49)|x — yl, [Li(z) = L(y)| < (1/30)|z — y| and [[;(z) —

( )| < (1/45)\ y| then, (H,), (Hy) and (Hj;) are satisfied with L = (1/49),
= (1/30), M* = (1/45). We find that
TRt — tp1)? 1380817 “ 9
= - = — t — t N = —
2’ ; 1+qr 180180 2 ?—;( £ = be-1) = 750

45 45
V3:Ztk(tk_tkfl) = V4:Ztk:_'
- 100 10

Clearly,
L(vy + Tvy + v3) + mM + (mT + vg) M* = 0.7839 < 1.
Hence, by Theorem 2.3.5, the initial value problem (2.13) has a unique solution

on [0, 1].

2.4 Fixed Point Theorems

A wide range of problems in nonlinear analysis may be presented in the form of
an abstract equation
Lu = Nu,
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where L : X — Z is a linear operator and N : Y — Z is a nonlinear operator
defined in appropriate normed spaces X C Y and Z. For example, the Dirichlet
problem fits into this setting, with Lu := «” and Nu := f(-,u). In this case, N
is defined, for example, over the set of continuous functions, but L requires twice
differentiable functions. Together with the boundary conditions, this yields the
following possible choice of X, Y and Z:

X ={u e C*(0,1]) : w(0) = u(1) = 0},
Y ={ue C([0,1]) : u(0) = u(1
Z = C([0,1]).

In some cases, one may just consider the restriction of N to X and try to find
zeros of the function F : X — Z given by Fu = Lu — Nu; however, in many
situations this approach is not enough, and a different analysis is required. In
particular, the previous Dirichlet problem is an example of so-called nonresonant
problems since the operator L : X — Z is invertible: for each ¢ € Y, the
problem u”(t) = ¢(t) has a unique solution v € X. Thus, the functional
equation Lu = Nu is transformed into a fixed point problem:

u= L 'Nu.

2.4.1 Contraction Mapping Theorem

Several abstract tools have been developed to deal with problems of this kind;
in this chapter, we begin with one of the most popular fixed point theorems
in complete metric spaces the contraction mapping theorem. Let X and Y be
metric spaces. A mapping T : X — Y is called a contraction if it is globally
Lipschitz with constant o < 1. In other wards, 7" : X — Y is a contraction if
there existsa < 1 such that d(Txy,Txs) < ad(ry,xs) for all z1,z5 € X. Note
that used the same d for the distance in both X and Y; this is not a problem,
in particular, because we shall only consider the case X =Y.

Theorem 2.4.1 [39] Let X be a complete metric space, and let T : X — X
be a contraction. Then 7" has a unique fixed point z. Furthermore, if z( is an
arbitrary pint of X and a sequence is defined iteratively by z,,41 = T'(x,), then
= L, o D

The contraction mapping theorem allows a simple and direct proof of the Picard
existence and uniqueness theorem. In this case, we want to solve the functional
equation

by S+ / £(s, ¥(s))ds,
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so the “obvious ”fixed point operator is

Tx(t) == xg —I—/O f(s,x(s))ds.

We only need to find an appropriate complete metric space X such that T :
X — X is well defined and contractive. R
To this end, let us first consider constants d,r > 0, such that K C €0, where

K = [to — 0,to + 0] X B,.(z0).
Next, define M := || fix||| and L as the Lipschitz constant of f over K, and let
X :={z € Oty — d,to + 6], R") : (t) € B,(x) for all ¢.

for some & < § to be established. In other words, X is just the closed ball of
radius 7 centered in xq in the space C([ty — J,to + d],R"™), equipped with the
usual metric
d = t) —y(t)|.
(@y) = _max _[a(t) = y(0)

It is clear that T': X — C([to — 9, to + 0], R*) is well defined and, moreover,

|Tx(t) — x| = < Mo.

/t: F(s,2(s))ds

Choosing 0 < 7, it follows that X is an invariant set, i.e. T(X) C X. On the
other hand for x,y € X, then

d(Tz,Ty) = max

< dLd
t€[to—0,t0+3] — (95 ) y)

/t (5, 2(5)) = (5, 5(5)))ds

Hence, it suffices to take § < min{ﬁ,%}, and then 7" : X — X is a
contraction.

Although the Banach theorem ensures that the fixed point is unique, an extra
step is needed for the uniqueness invoked in Theorem 2.4.1 since, in principle,
for the same § there might be other solutions that abandon the ball B, (z).
One possible line of reasoning is as follows: suppose y is another solution and
fix § € (0,6] such that |y(t)] < r for t € [ty — J,to + 6]. Next, redefine the
space X accordingly, so the operator 7" has a unique fixed point and thus x =y
on [ty —&,ty + 6]. This proves only local uniqueness, in the sense that two
solutions must coincide in a neighborhood of 5. But now the same existence
and (local)uniqueness result does the rest of the job: suppose two solutions
x and y are defined over an open interval [ containing ty; then the set J :=
{t € I:x(t) =y(t)} is closed in I and nonempty. Moreover, if t; € J, then
x(t1) = y(t1), and hence z = y in a neighborhood of ¢;. This shows that J is
open and, consequently, J = I.
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Theorem 2.4.2 [39] Let X be a complete metric spaces, and let T : X — X
be a mapping. If 7" :=ToTo---T (n times) is a contraction for some positive
integer n, then T has a unique fixed point.

Theorem 2.4.3 [39] Let f : [a,b] x R" — R" be continuous and globally Lips-
chitz with respect to x with constant L. Then for any (o, zo) € (a,b) x R™ the
unique solution of the problem

{x/@) = f(t,z(t))

.T(t[)) = Ty
is defined over [a, b].

The contraction mapping theorem is an efficient tool for proving existence and
uniqueness, although its application might also be quite restrictive. The as-
sumption that f is globally Lipschitz is already strong; furthermore, we have
required the Lipschitz constant to be small. Nevertheless, there are many cases
in which this assumption can be relaxed. In Picard’s fundamental theorem, this
was easy: only a local Lipschitz assumption was required since we were looking
for local solutions; in other situations, the global Lipschitz condition may be
avoided if one is able to obtain a priori bounds for the solutions, as we saw in
the first chapter. But, still, one must prove that the fixed point operator is con-
tractive: this explains why the Lipschitz constant must be small. The smallness
assumption can be dropped when the operator has some other properties, such
as monotonicity.

Theorem 2.4.4 [39] Let H be a Hilbert space, and assume that T: H — H is
globally Lipschitz and monotone nonincreasing, that is

(Tz =Ty,z —y) <0

for all z,y € H. Then for each fixed y € H the equation z = T'r + y has a
unique solution. In particular, T" has a unique fixed point.

2.4.2 Kranoselskii Fixed Point Theorem

Theorem 2.4.5 [/0] Let K be a non-empty complete convex subset of a normed
space F, let A be a continuous mapping of K into a compact subset of F, let
B map K and satisfy a Lipschitz condition

|Bx = Bx'|| < klje = 2| (x,2" € K),

with 0 < k < 1 and let Az + By € K for all ,y € K. Then there is a point
u € K with
Au + Bu = u.
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Corollary 2.4.6 [/0] Let K be a non-empty complete convex subset of a normed
space, let A be a continuous of K into a compact subset of K, let B map K
into itself and satisfy the Lipschitz condition

|Bx — Ba'|| < [z — 2| (2,2 € K),
and let 0 < aw < 1. Then there exists a point © € K with
aAu+ (1 — a)Bu = u.

In general, under the condition of Schauder’s theorem, we have no method for
the calculation of a fixed point of a mapping. However there is a special case in
which this can be done using a method due to Kranoselskii.

Definition 2.4.7 A norm p is uniformly convex if it satisfies
P =) =1 (n=12..), I ple,+y) =2 = lm pla, —y,) =0.

Lemma 2.4.8 [40/ Let p be a uniformly convex norm, and let eM be positive
constants. Then there exists a constant 6 with 0 < § < 1 such that

p(x) <M, ply) <M, plz—y)>ec=plx+y) <20max(p(z),p(y)).

Theorem 2.4.9 [/0] Let K be a bounded closed convex set in a Banach space
E with a uniformly convex norm. Let T" be a mapping of K into a compact
subset of K that satisfies a Lipschitz condition with Lipschitz constant 1, and
let xo be an arbitrary point of K. Then the sequence defined by

1
. = §(x” + Tz, " (n=105124, )

converges to a fixed point of T" in K.

2.4.3 The Leray-Schauder Fixed point Theorem

We apply the topological transversality theorem to the equation © = F(x),
where F'is a compact or completely continuous operator.

Theorem 2.4.10 [/1] (Leray-Shauder principle). Let C' C E be a convex set,
and let U be open in C. Let {H,; : U — O} be an admissible compact homotopy
such that Hy = F and Hy = G, where G is the constant map sending U to a
point ug € U. Then F' has a fixed point.

Theorem 2.4.11 /1] (Nonlinear alternative). Let ' C E be a convex set, and
let U be open in C' and such that 0 € U. Then each compact map F': U — C
has at least one of the following two properties:
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(a) F has a fixed point,
(b) there exist x € 9U and X € (0,1) such that x = AF(x).

Many of the customary fixed point theorems can be derived from the non-
linear alternative by imposing conditions that prevent occurrence of the second
property. As an illustration of such conditions, let p : E — R™ be any (not
necessarily continuous) function such that p~*(0) = 0 and p(Az) = Ap(z) for all
A > 0; any norm, not necessarily equivalent to the given one in F, is an example
of such a function. Then we have

Corollary 2.4.12 [/1] Let C' C E be convex, and U C C an open subset that
contain 0. Let F': U — C be a compact map. If either

e Rothe type condition: p[F(z)] < p(z) for all x € OU,

e Altman type condition: [pF'(z)]* < [p(F(z) —x)]>+[p(x)]? for all z € AU,
then F' has a fixed point.

Theorem 2.4.13 [/1] (Leray-Schauder alternative). Let C' be a convex subset
of £/, and assume 0 € C. Let F' : C'— C be a completely continuous operator,
and let

e(F) = {x € Clxr = A\F(x) for some 0 < A < 1}.

Then either ¢(F') is unbounded or F' has a fixed point.

Theorem 2.4.14 [41] Let F': E x I — E be a completely continuous operator
such that for some § > 0, F(z,t) = —F(—x,0) for all x € E with ||z]| > J. Let

e(F) ={xz € E|lx = F(z,t) for some t € (0,1)}.
Then either e(F) is unbounded or = — F'(z,1) has a fixed point.

Consider the compact homotopy Fi(z) = F(x,t) for (z,t) € B x I; we may
assume that F; is fixed point free on §B, so that Fy = F; in Hyp(B, E). Then
since F} is antipode-preserving on 0B, the desired conclusion follows.

Recall that an operator F': £ — FE is called quasi-bounded whenever
LE@) [1£(2)]]

sup ———— < 00
]| >0 1>5 |7l

1F]| = Timyjz)os

Theorem 2.4.15 [/1] Let F' : E — E be a quasi-bonded completely continuous
operator. Then for each real |A| < 1/||F|| (and for all real A whenever || F|| = 0)
the operator \F' has at least one fixed point. More generally: for each y € E
and || < 1/||F|| the equation

y=1x—\F(x)

has at least one solution.
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2.4.4 Multi-Value Mapping

Now, we recall some definitions and notations about multifunctions ([42], [43]).

For a normed space (X, || - ||), let Pu(X) = {Y € P(X) : YV is closed },
Pp(X) ={Y € P(X) : Y is bounded }, P, (X) ={Y € P(X) : Y is compact },
and Pep (X)) ={Y € P(X) : Y is compact and convex }.

A multi-valued map G : X — P(X) is convex (closed) valued if G(z) is
convex (closed) for all z € X. The map G is bounded on bounded sets if
G(B) = U,epG(z) is bounded in X for all B € Py(X) (i.e. sup,ep{sup{|y| :
y € G(x)}} < o0.) G is called upper semi-continuous (u.s.c.) on X if for
each zy € X, the set G(xo) is a nonempty closed subset of X, and if for each
open set N of X containing G(xg), there exists an open neighborhood N of
zo such that G(Ny) € N. G is said to be completely continuous if G(B) is
relatively compact for every B € P,(X). If the multi-valued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has
a closed graph, i.e., x, — ., Yn — Ys, Un € G(z,) imply y. € G(z,). G
has a fixed point if there is € X such that z € G(z). The fixed point set
of the multivalued operator G will be denoted by FizG. A multivalued map
G : J — Pg(R) is said to be measurable if for every y € R, the function
t— d(y,G(t)) = inf{ly — z| : z € G(t)} is measurable.

We define the graph of a function G to be the set Gr(G) = {(z,y) € X x
Y,y € G(z)} and recall two results for closed graphs and upper semi-continuity.

Lemma 2.4.16 (/42/, Proposition 1.2) Let G : X — Py(Y) is u.s.c., then Gr(G)
is a closed subset of X XY, i.e., for every sequence {x, }neny C X and {y,}nen C
Y, if when n — 00,2, — Tu,Yn — Yu and y, € G(x,), then y. € G(x,).
Conversely, if G is completely continuous and has a closed graph, then it is
UPPer Semi-continuous.

Now we state some known fixed point theorem which is needed in the sequel.

Lemma 2.4.17 (Nonlinear alternative for Kakutani maps)[}4]. Let E be a Ba-
nach space, C' a closed convex subset of E, U an open subset of C-and 0 € U.
Suppose that F': U — Pep o, (C) is a upper semi-continuous compact map. Then
either

(i) F has a fized point in U, or
(11) there is a w € OU and A € (0, 1) with u € \F(u).
Lemma 2.4.18 ([45]) Let X be a Banach space. Let F: J x R* — P, .,(X) be

an L'- Carathéodory function and let © be a linear continuous mapping from

LY(J,R) to O(J,R). Then the operator
©0Sp: C(J,R) = Pepaw(C(J,R)), 2= (00SF)(x)=0(Srs),
is a closed graph operator in C(J,R) x C(J,R).
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Lemma 2.4.19 ([47]) Let Y be a separable metric space and let N 'Y —
P(LY(J,R)) be a multi-valued operator satisfying the property (BC). Then N
has a continuous selection, that is, there exists a continuous function (single-
valued) g : Y — L'(J,R) such that g(x) € N(z) for every x € Y.

Lemma 2.4.20 (/48]) Let (X, d) be a complete metric space. If N : X — Pj1(X)
is a contraction, then FizN # ().



Chapter 3

Research Methodology

In this chapter we transform the boundary value problem (1.4) and (1.5) into
integral equations.

3.1 Integral Equation of (1.4)

For the sake of convenience, we introduce the following notations which will be
used to compute some quantum constants. For nonnegative integers a < b, we
have

e = [5G )
U(a,b) = i‘(tm — t)Q(a, 1), (3.2)

with [T4) =1, 24-) = 0, if ¢ > d. For example,

(tg = tg)l_” (t4 1 tS)l—“/s (t3 \_ t2)1—72
g (2 =) Ly (2 —3) Fq2(2 —2)

The following formulas expressed in terms of above notations will be used in
the sequel.

W(2,5) = (t3 — ta) + (4 — t3) + (t5 — ta)

Property 3.1.1 Let a < b be nonnegative integers. The following relations hold:

(P1) Y(a,b)+ (tps1 —tp)2a,b) = ¥Y(a, b+ 1),

b—1 b b
(P) Z W(i,0) + (toys — by) Z Qisb) = Z (i, b+ 1).
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Now we present an auxiliary lemma which plays a pivotal role in the forth-
coming analysis.

Lemma 3.1.2 Let )\1(51\1/(0,7’)1 -+ ].) | ng(O,m + 1)) 7é 51)\2 and g € C(J, R)
Then the unique solution of the linear problem

(e DMa(t) = g(t), te T[0T, t+£t,
Ax(ty) = 2(th) — a(ts) = o (), k=1,2,...,m,
tchQkx(tZ> - gk,ng::;x(tk) ~ SOZ (x(tk)) ) k= 1? 27 Sy M

[ A12(0) + Ay 0Dyx(0) = 0, §a(T) + &, Dima(T) = 0,

(3.3)

15 given by

m—1

a(t) = % {A2 = Au(W(0, k) + (¢ — )0, k)) } (51{ (6157 9(tiv1) + i1 (2(tiv1))]
0

1=

+ Ui+ L,m A+ 1) [ I ig(ti) + @i (2(tipn))] + tmfgﬁg(T)}
=0

m—1
+52{ Q@+ 1L,m+1) [ Io Vg (1) + 051 (x(ti41))] + tmIqawT'Y’”g(T)})

=0
k—1 k—2
D [0 g(tin) + i (@t )] + > Uit LK) [, 107 Vg(tinn) + @iy (@(tirn))]
1=0 =0
k—1
F(t—tr) ) QM +1,E) [, 157 g(bir1) + Oia (2(bir1)] + o Igkg(t). (3.4)
1=0

where A = A\ (§¥(0,m + 1) + &Q2(0,m + 1)) — & Xs.

Proof. Using the Riemann-Liouville fractional gy-integral of order ay to both
sides of the first equation of (3.3) for t € .J; and applying Lemma 2.2.7, we have

quox(O)

to Loy by Dol 1(t) = x(t) = x(0) — T, (2)

qo0 to

t= to-[:])gog<t)’

which leads to

z(t) = Co + Cit + 4,150 g(t), (3.5)
where Cy = 2(0) and Cy = ;Dgx(0). From the definition 2.2.6 and (2.6), we
get

(t . 1 tk)l_’y’c

, k=0,1,2,...,m, C €R.
Ff]k(2_7k)

ngZJYJI:C =0, ng:Jy: (t=tr) =
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Then we get for t = t; that

(tl _ to)lf“m

2(t) = CotCitit, I20g(t) and & DPx(t) = Cy RO

+tOIg:)07’yog(t1>.

(3.6)
For t € Jy, again taking the Riemann-Liouville fractional ¢;-integral of order o
to (3.3) and using the above process, we get

w(t) = z(t]) + (t = t1)ty Doy 2(t]) + ¢, 15 g (1) (3.7)
Applying the impulsive conditions z(t{") = z(t1) + ¢1 (z(t1)) and 4, Dy z(t]) =
foDag(t1) +i (2(t1)), we get

T i
%1_:1(10(%}/0’)— + [tolgf)og(h) + 1 (x(tl))]

+(t = t1) [ L5 9(t) + 1 (2(t1))] + 0 15} 9(2).

z(t) = Co+ Oy |:t1+(t—t1)

In the same ways, for t € J, we have

z(t) = co+01{(t1—t0)+(t2_tl)%§

+ [t 52 g(t1) + @1 (2(t1))] + [t 151 g(ta) + @2 (2(t2))]

() 2 BT (B o) }

Lg (2 - 71) Ly (2 - ’70)

' 1o
it =) { T [T a(h) + i (a(e)]
+ [ 1 " g(t2) + @5 (2(t2))] } +(t2 = t1) [todg’ 9(t1) + 7 (x(t1))]
+t2[:1);29(t)'

Repeating the above process and taking into account of (3.1)-(3.2), for ¢ €
Jpy CJ, k=0,1,2,...,m, we have

o) = ot O RO+ (¢ = 800 DY + 32 [0 (tic) + i (i)
k—2
+ UGB [Ty g+ e (alti0)] (33

+ @ —te) ) QU+ 1Lk) [ 1577 gltin) + 0fy (2(tin))] + o 159 (D).
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From (3.14), we find that

z(T) = Co+CL{¥(0,m)+ (T — t,,)Q0,m)} + Z_ [ I07g(tis1) + it (2(tinn))]
T Z Ui+ 1,m) [, I g(tina) + @i (2(tin))]

—_

m—

H(T —twm) D Qi+ 1,m) [o 15 g(ti1) + 91 (@(tis1))] + 4,157 9(T)

%

I
o

m—1
== CO+01 0 m"l’ +Z 9 H—l +<pz+1( (H—l))}
=0

m—1
+ Y (i L m A1) [ IS g () + P ()] + e o g(T),
=0
and
m—1
¢ Dima(T) = CiQO,m+1)+ 3 Qi+ 1,m+1) [ I8 g(ti) + ©fp ((tin))]
=0

+ tmfam ’ymg(T)
From the boundary condition of (3.3), we find that

A s
Co = %é;l{ Z [tiliig(ti—kl) + ©Yit1 (J}(ti+1))]

=0

- Z V(i+1,m+1) [tinQ;i_Vig(ti+1) + @iy (:C(tz'+1))] "5 tmIg;”g(T)}

Yo
A

3

Q(i +1,m+ 1) [6 15 gltin) + i (@(tis1))] + tmfa,;”‘”’”g(T)}

i=0
and
\ m—1
Cr = _IAQ{ZO tilg 9(tiv1) + @i (2 (ti41))]

m—1
o Z i+ 1,m+1) [, 10 7V g(tiva) + P (@(tira)) | tmfamg(T)}

m—1

)\ i =Y * Om —

152{ D 0+ 1, m 1) [ I8V g (b)) + @iy (2(tign))] + e g 7mg(T)}-
1=0

Substituting the values Cy and Cj in (3.14), we obtain the unique solution
(3.4). This completes the proof. O
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3.2 Integral Equation of (1.5)

Lemma 3.2.1 Let h € C(J,R). Then the unique solution of
((; Dgrx(t) =h(t), teJ,C[0,T], t#t,

Ax(ty) = px <tk 1[55 llx(tk)> k=1,2,...,m,

tkDQkx(t;:) - tk71DQk71x(tk> S 901: <tk 1[% 1 x<tk>> k= 1’ 2’ s My
 2(0) = —x(T),  0Dg2(0) = =, Dq,, 2(T),

(3.9)
15 given by
o{t) = _gi [ Lo bt + s (1 ()]
52— otz e+ (o)
_ %tm anp(T) + (t € g) [_ %i {tH st
=1
+p; (ti_l-];l_llx(tz’» } - %tm ]?,,:”_lh(T)]
D3| W EN R )]
+ Z@—m{l Tes k) 4.9} (o () }
i=1

+ e dgih(t), (3.10)

where 330() =

Proof. Applying the Riemann-Liouville fractional gy-integral operator of order
ap on both sides of the first equation of (3.9) for ¢ € Jy and using Lemma 2.2.7,
we obtain

apc o D
t()]qootoD O$( ) Qf(t) - :E(O) N - FZO(Q)
0

which yields
l’(t) = OO == Clt + to];)oh(t), (311)

where Cy = z(0) and C} = ;Dy,2(0). In particular, for ¢t = ¢, we have
( ) C() + Oltl + to ;Oh<t1) and tODquL’( ) 01 + to qo 1h(t1). (312)
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For t € Jy, application of the Riemann-Liouville fractional ¢,-integral operator
of order a; to (3.9) and using the above arguments, we get

2(t) = 2(t7) + (t = t)e, Dgy x(t) + 1, 1 h(t). (3.13)

Using the impusive conditions a(17) = o(t1)-+ 1 (4 [(t) and (, Dy, (1) =
toDgo(t1) + ¢ (10 17°2(t1)) , we obtain

o(t) = Co+Cit+ [Ih(t) + o1 (10102 (1))]

q0

+ (t —t1) [ 2 h(ty) + ©f (10120 (t1))] + 0 IMR(2).
In a similar manner, for ¢ € J5, we have

x(t) = C(] + Clt + [tof(?g)h(t1> i @1 (tOI’BO (tl))} + [tllgllh(tg) —+ Y2 (tlffllx(tg))}
+(t — 1) [l ™ h(tr) + 1 (wlgez(th))]
+ (t - t2) [tljcil_lh(t2) + 902 (tljfy (t2)):| + tQIt?;Qh(t)‘

Repeating the above process, fort € J, C J, k=0,1,2,...,m, we obtain

w(t) = Co+01t+i[”]jzllh( L)+ i (1 I ()]

=Nt

- S g+ o (cage)
+tkf§;’“h( ); (3.14)

where Y29(-) = 0. Notice that z(0) = C; and

2(T) = 00+01T+§m: [ Lo hlt) + o3 (s T () |

=l

B Z — 1) o do htt) + o7 (o e () }
+tm1amh(T)
On the other hand, we have
nDa(t) = Cr + Z (et () + ot (o s+ aToeh(o),

which implies ¢ Dgx(0) = C; and

3

C1+Z{LJ§” Ut 8 (i dgtats)) |+ e R(T).
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Now making use of the boundary conditions given by (3.9), we find that

m

Co = —%OlT—%Z[HI;? Lh(t )‘i‘%‘(zlfff ())]

i=1

——Z = 1) {u T ) + 6 (o () | = e o D),
and
- ——Z{z T ) + ot (o T e0)) } = Sun g D)

Substituting the values Cy and C; in (3.14) yields the solution (3.10). O
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Chapter 4

Main Results

Let PC(J,R) = {z : J — R : z(t) is continuous everywhere except for some
tr at which z(¢)) and z(t; ) exist and z(¢, ) = z(tx), k = 1,2,...,m}. Observe
that PC(J,R) is a Banach space equipped with the norm ||z||pc = sup{|z(t)] :
teJ}

In view of Lemma 3.1.2, we define an operator Q : PC(J,R) — PC(J,R)
by

Qu(t)
m—1
== %{)\2—)\1(\1’(0,]{2)-#@—7519) < { [I fsx,tl x)( z+1)

=0
s 1
+@ir1 (z(tit1) } + Z U(@+1,m+1) [ W LN, £ I “x)(tiv1)
=0
+90:<+1( (Z+1))i| +tmIam ( ’tm‘lﬁm )( )}
m—1
+52{ S Qi Lt O [o T8 (s, 20 ) () + 0l (@ltisn)] (4)

1=0

k—1
i Lgr T f (s, 2, tmffgfv)(T)D D [tilg"f(s, 2,410 %) (tis1) + it (x(ml))}

=0
k—2
+> Ui+ 1,k) [tilgﬁi_wf(s,w’ LID) (i) + 9051 ($(ti+1))}
1=0
k-1
(=) > Qi +1,k) [tif(i"_"”f(s 2,4 10) (ti1) + of (o (Ml))]
1=0

o I8 f (8, 2, 4, 1P 2) (B),
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where

1
I (p)

Wlthpe {a())--'aoémaa()_’)/Oa"'7am—7m}75 € {50)"'7B’m}a qe {q07"'7q’m}a
a € {ty,...,tm}and u € {t, t1,t9, ..., tym, T}.

oI} f (s, 2, L)) (u) = / o= a@g() P f(s5,2(5), al2(5))adys,

In view of Lemma 3.2.1, we define an operator A : PC(J,R) — PC(J,R)

Az(t) = —%i[ g flt w) + i (o To () )|
—ég@—m{z et 2t) + o (i Iymia(t) b
-yl f T+ (e ) | - %i (o a7 s e(0)

v (i galt) } = o s (LD

+Z[z Tt o)) + s (o T () )|

i Z(t —t;) { el (Eh 2 () + 95 (tiflf(zijllx(ti»}
oI {2 (1)), (42)

where
1

2 U — sN@D f(s 2(s .
Fq<p>/a ot = o @o($)F 7V (5,2(5))ulys,

pe {0507"'7OéM7a0_17"'7am_17ﬁ07~"75711717707"'7777171}7qe {q07"'7Q7TL}7
a < {to,...,tm} and u € {t,tl,tg,...7tm,T}.

of§ f (u, 2(u)) =
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4.1 Existence results for BVP. (1.4)

Now we are in a position to present our main results. The first one is based on
Krasnoselskii’s fixed point theorem. Further, we set the notations:

A = |A| {IA2| + [A1]P(0,m + 1)}

><<|§1 {Z Zjl ) ;W(z—i—l m_|_1)IE zzrl —tjza;Y)}

1=0

m (tiJrl _ti>0¢i_'ﬁ'
+ & {ZQ (1 +1, m+1)rqi(ai_%+1)})

()

(67

m—1
i+l : (g1 — t) ™
+Z q*a + > Wi+ 1,m+ 1) (4.3)
ac i=0

Ly (0 =7+ 1)

A (U) = |A‘ {|Aa] + [A1|¥(0,m+ 1)}
X <|51| {mU1 + Uy > W(i,m+ 1)} + 16|02 Y Qi m + 1))
i=1 =1
+mU; + U, i U(i,m—+1), (4.4)
=1

where U € {N, L}.

Theorem 4.1.1 Let f : J X R* —» R and ¢, 0f : R = R, k=1,...,m be
continuous functions. Assume that:

(H) |f(t,z,9)| < w(t), Y(t, 2,y) € T xR?, and p € C(J,RY).

(Hy) There exist positive constants Ly, Lo such that |k (z) — k(y)| < L1|x Y|
and |pi(z) — @p(y)| < Loz — y| for each z,y e R, k =1,2,..

(Hg3) There exist positive constants N1, Ny such that |ox(z)| < Ny and |gi(x)] <
Ny forallz e R, for k=1,2,... m.

Then problem (1.4) has at least one solution on J provided that
Ao(L) < 1. (4.5)

Proof. Let us define sup,c; |p(t)] = ||i|| and select a suitable ball B = {z €
PC(J,R) : ||z]|pc < R}, where

R > || p]| A1 4+ Ag(IV), (4.6)
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and Ay, Ay are defined by (4.3) and (4.4) respectively. Next we define the oper-
ators @ and Q on B for t € J as

(Qu)(t) = x oo~ M(W(0,K) + (1 — )20, K)} <£{ DI s 1) )

—1—2\112—1—1 m A4 1), 1577 f (s, SC,tI SL‘)(zH)}

=0
{ > Qi+1m+1 Igi_%'f(s,m,tilgix)(tiﬂ)})
k—1 F k—2
A I (s I (b)) + > W+ 1K) I f (s, 0,0, 10 w) (i)
=0 W =0

+(t—te) Y QG+ 1,k), 1577 f(s,, tilgl’x)(tiﬂ) + . Lk f (s, z, tk]i’“x)(t),

%

Il
=

(4.7)

and

Q)0 = x £ = Ma(WO k) + (= )20, 1)} (5{ > (a(t)

+ ) Wi, m 4 1)p; (a(ts) } + & {Z (i, m + 1)@; (x(ti))} )

43 6 (00) + YW Kt () + (F— ) D096 R ().

(4.8)
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For any x,y € Bg, we have

11(t) + Quy (1)
< DRl P, m) 4 (7 = £,)0200,m)
X <|§1 { Z 11 1(tiv1) Z_ Ui+ 1,m-+ 1)til;i—7i1(ti+1)}

+ &l {ZQ i+1,m+1) Igzi_’Yil(ti—s—l)})

)

m—2

i Z oLt Lti) + lell D2 WG+ L) I 1 (ti41)
=0

m—1
Il (T = tn) D Q6+ 1, m)e I 1(tiga) + | plle, I 1(T)
=0

,g (o] (0, m) + (7 — £,)92(0, m)))

. ('51' {mM N2 ) Wi+ 1>} [l N (i m o+ 1>)
=1 i=1
m—1 m
+mN1+NQZ\Ifzm )+ No(T ZQ
i=1 =1

m

] (1101~ 1)
= &Pl Dl m ) (m{; SR

F%’(al W N+ 1)

fn y2 kg
Q I, 1
+|§2{:0 (4 1m + )F_(a._%le)})

W g t £)% i
Z\If¢+1m+1)(”1 ) }

m—1 e
(i1 — )™ oM F)°Tr
+ \I/ 1.m
4 | 2 Fl( =1 HMHZ (i + )Fqi(ozi—%+1)
m—1
(ti+1 — X )& (T = t,)%m
+ Qi+1,m _.___|_A N
R 2B i, ) gy I 2y
= [lpl|Ar+ Az (N),

which implies ||Q1x + Qoy|| < ||u||Ay + A2(N). Therefore, Q1z + Qay € Bg.
This shows that condition (a) of Theorem 4.1.1 is satisfied.
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Next we will show that the operator Q; satisfies condition (b) of Theorem
4.1.1. Using the earlier arguments, we get that Q; is uniformly bounded on Bp,
that is,

1Qizl[pe < [lpflAr-

Now we establish the compactness of Q. Setting sup(, , yesxnpxny |f (T Y)| =

< oo, then, for each 71, 79 € (ty, tpy1) for some k € {0,1,...,m} with 75 > 7,
we obtain
| A1 | TN (tign — 1)
[(Q12)(12) — (Qiz)(1)| £ |2 — 7 Q0, k) { 1&1] _—
A ; Ly (ai +1)
m—1
(tH—l — 1 ) T
o \1/ +1,m-+1
; D3iu )F (i =i+ 1)
—] (tigr — )
Q 1 1
—H&\{; (t+1,m+ )Fqi(ai—%—l—l)
.- (i1 — )

i |72—71|Zm+1 o Pe——

*

L

(72— tg)* — (1 — )]
e e ) (-

As 11 — 7o, the right hand side of the above inequality tends to zero (in-
dependent of x). Therefore, the operator Q; is equicontinuous. Since Q
maps bounded subsets into relatively compact subsets, it follows that Q; is
relative compact on Bgr. Hence, by the Arzeld-Ascoli theorem, Q; is com-
pact on Bg. Now let x, € Bg with ||z, — z| — 0, n — o0o. Then the
limit |z,(¢) — x(t)] — 0 uniformly valid on J. From the uniform continu-
ity of f(t,x,4,I0%x) on the compact set J x [-R, R] x [=R, R] if follows that
|f(t, ﬂfn,tkfgffn) — f(t, x,tk[(i’“x)l — 0, n — o0, is uniformly valid on J. Hence
| @12, — Q12||pc — 0 as n — oo which proves the continuity of Qj.
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Now we show that Q, is a contraction. For z,y € PC(J,R), we have

IQﬂ( ) — Qay(t)|

< |A| {Ia| + M1 (0,m + 1)}
><<|£1!{Z\soi<:v(ti))— i(y(t I+Z\sz+1)m( (ti) — %(y(t))!}

+&2| Z Q(,m + 1gi (x(t:) - wf(y(ti)ﬂ) + Z |oi(2(t:)) — wily(t:))|

+Z‘Ifzm+ Dl (2(t:) — @i (y(t))]

=1
< ML)z —ylpe,

which yields ||Qox — Qoyllpc < Ao(L)||7 — yl|pe. From (4.5), it follows that Qc
is a contraction. Thus problem (1.4) has at least one solution on J. The proof
is completed. O

Our next result is based on a fixed point theorem due to O’'Regan. For the
sake of brevity, we use the following constants in the sequel.

Ay = Eﬂ““' (0, m + 1))
(!61 { i qzzz L z+/3’) 4 m;_: Ui+ 1,m+ 1)Fit(i: ;;)i*j:l) }
+ &2 { iQ i+, m+ 1)F§it(i: ;;?i:j:l) })
i+ :0 F(ZZ;Z—;B)ZQM + mzlxll (i +1,m+ 1)Fi (: ;;wz;l) (4.9)
N \A| ]+ AL (0, + 1)} mléi] + m, (4.10)
Ao = A ul k0, 1>}§<r&|\v<z’,m+ 1) + el m + 1)
+Zm:\11(z,m+ 1). (4.11)
=1

Theorem 4.1.2 Suppose that the condition (H3) and the following assumptions
hold:
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(Hy) There exist a continuous nondecreasing function ¢ : [0,00) — (0,00) and
a continuous function p : J — RY such that

[f(t 2, y)] < p)v(lal) +lyl, V(t,z.y) € J xR (4.12)

(Hs) There ezist two continuous nondecreasing functions wy,wy : [0,00) —
[0,00) and two positive constants Dy, Dy such that

iz —yl) and wi(al) < Difal, (413)
walle —y|) and wo(|z|) < Dolz|, (4.14)

on(@) — r(y)] <
or(@) — iyl <
forall z,y € R, for k =1,2,...,m satisfying

DiAy + Dohs < 1. (4.15)
where Ay, A5 are defined by (4.10) and (4.11), respectively.

(He)

1
sup A A < 1, (4.16)

> )
re(0,00) PU(T)A1 +A(N) = 1 - Ag

where p* = sup,c; |p(t)], A1, Ao(N) and A3 are defined by (4.3)-(4.4) and
(4.9), respectively.

Then there ezists at least one solution for problem (1.4) on J.
Proof. Consider the operator Q : PC(J,R) — PC(J,R) defined by (4.1) as
Qx(t) = Q1z(t) + Qox(t), t€J,

where Q;, Qy are given by (4.7) and (4.8) respectively. From (Hg), there exists
a positive constant p > 0 such that

P - 1
PY(p) AL+ A (N) © 1Ay

Let B, = {x € PC : ||z|lpc < p}. As in the proof of Theorem 4.1.1, Q,
is continuous. Using (4.12), we now show that Q;(B,) is bounded. For any



|Qiz(t)] < |A| {2l + A ¥ (0, m + 1 <|51 {th]qz
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x € B,, we have

=0

m—1

=0

)+ 010 p) (tit1)

Wi+ 1mA4 1) Lo (p 0 (p) + 1,15 )(z+1)}

+& Y Q6+ 1, m+ 1) I (0" (p) + 15 p) ( z+1>}>

+Ztif$" (% (p) + 10 p) (tisn)

+ A Ui+ 1,m+ 1), 1077 (p*b(p) + ¢, 10 p) (tir)

X(\fﬂ{p*@b( )Z i1y 1t +PZ [a’+ﬂ’1 (tis1)
=0

-1

+p*P(p) ) V(i +1,m+ 1) dy " 1(ti1)

3

m—1
+p Z (i +1,m+ 1)@-[(2#5"_%1(ti+1)(ti+1)}

+ & {p*w(l)) Z QG +1,m+ 1), 107 " 1 (tiy1)

=0
+pYy Q(i+1.m+ 1)ti];i+5i_%1(ti+1)}>
E=(0)

+p*1/’(p)2tif§? tiv1 +PZ Iaﬁ'ﬁl (tis1)

0

.
I

3
f

+p*(p) Wi+ 1,m+ 1), 151 (t51)
o
m—1
+p Z Ui+ 1,m+ 1) I8P (8,
i=0

= p'(p)AL + pAs.
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Thus ©Q; is uniformly bounded. As in the proof of Theorem 4.1.1, we can show
that Q; is equicontinuous. In consequence, it follows by Arzeld-Ascoli theorem
that Q1(B,) is compact and hence completely continuous.

Next, we will show that Qs is a nonlinear contraction. Define a continuous
nondecreasing function v : Rt — RT by

I/(g) = (D1A4 + D2A5)€, Ve Z 0.

Note that v(0) = 0 and, by condition (4.15), v(e) < ¢ for all £ > 0. For any
x,y € B,, we have

IN

IN

<

| Qo (t) — Qay(t)]
el + T, m 4 1)) (w{ >l a(t)) — i (v(t)|

+ Y Wi, m+1D)|ef (z(t:) — @5 (y(t:) |}

i=1

+[&2| {Z Qi m+ Dlg; (2(t:)) — @7 (y(6:) I} )

+ Z i (2(ta) — i (y(t)) | + Z U(i,m+ 1)|g; (x(t:) = @ (y(t:)) |

%{M + |\ |T(0,m +1)} (|£1|{ Zwl(Hx —yllpc)

+ ) Wi, m+ Dw(llz — prc)} +1& {Z Q(i, m + Dws(||l= ~ prc)} )

i=1 i=1
+ > wllle =yllpe) + > Ui, m + Dws(llz — yllec)
i=1 i=1

v(llz = yllpe):

Thus ||Qxx — Qoyllpc < v(||& — y||pc) which implies that Oy is nonlinear con-
traction.
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Next, we will show that the set Q(B,) is bounded. Using (H3), for z € B,,,
we have

|Qa(1))]
%{l)‘Ql + A ](0,m + 1)} (\Sll{ Dl (@) [+ Wi m+ 1)} («(t) \}

1 i=1

IN

+e {Z Qi m -+ Dl (o(t) |}) £l alt) |+ 3o Wlim+ 1)

IN

%{w + [ ®(0,m + 1)} <|51|{ D Nt ) W(imt 1>N2}

+|&2| {i Q(i, m + 1)N2} ) + il\h + i\l}(zm +1)N,
— Ag(N), -

which together with the boundedness of the set Q;(B,) implies that the set
Q(B,) is bounded.

Finally, it will be shown that the case (C2) of Theorem Oregan is false. On
the contrary, we suppose that (C2) holds true. Then, there exists # € (0,1) and
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x € 0B, such that x = §Qz. Thus, we have ||z||pc = p and

| (t)]

0| Qix(t) + Qaz(?)]
]le(t)| + Qo (t)|

|A| {|>\2|+|>\1|\P(0 m+1 <|£1 {Zt ]al pQ/J +t1]£2p) (tz—H)

=0

IA
3

IA

+ Z W(i+ 1,m A+ Dy L (0" (p) + 1.1 p) (tz’+1)}
i=0
+ |§2|{ Z QiAgmtDalg AT (p*¢(p) + tzfﬂjp) (t z+1)})
=0

+ 30T @90 + 1 1lip) (tir)

0

<.
|

3
L

+ ) Wi+ Lm A+ 1) Lo (p"(p) + 1) p) (tia)

i=0
zm+1 }

+Z {JA2| + M1 P(0,m + 1)} <|§1 { z::

+&| {Zﬂzm+ }) Xm: Xm:\lf(i,m—i—l)N

< P Y(p)A1 + pAs + Ay(IV),

Ms

which implies that
p. < Y(p)A1 + pAs + As(N).

This can alternatively be written as

P -
prp(p)Ar + Ag(INV) = 1= Ay’

which contradicts (Hg). Thus the operators Q; and Q, satisfy all the conditions
of Theorem Oregan. Therefore, by the conclusion of Theorem Oregan, problem
(1.4) has at least one solution on .J. This completes the proof. O

Finally we show the uniqueness of solutions of problem (1.4) by applying
Banach’s contraction mapping principle.

Theorem 4.1.3 Let the condition (Hs) holds. Further, there exist functions
M (t), My(t) € C(J,RY) such that

[F(t 2, 9)=f(t,2,9)] < My(t) [z =]+ Ma(t)[y=yl, Vt € J, 2,7,y,9 € R. (4.17)
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Then problem (1.4) has a unique solution on J if

MiAy + MiAs + AyLy + AsLy < 1, (4.18)

where M{ = sup,c; |Mi(t)| and My = sup,c; | Ms(t).
Proof. For any z,y € PC(J,R), we have

IN

<

|Qu(t) — Qy(1)]

1
Tzﬁ“ﬂ+“W“@m+1”

m—1
X <|§1|{ |:tquC:l f(sa xatquﬁfJ:) & f(su Z/mﬁﬂ/)‘ (tiJrl)
=0

)

+ Iss (@ti11)) = wosn (Wltis0) |

m—1
+ Z \II(Z + ]-7 m + ]') [tilgi_% f(sa Z, tl[(ﬁzx) y f<87 Y, tz[qﬁ;‘y)’ (ti-i-l)
=0

+ }90;;1 (z(tiv1)) — ¥ (y(ti+1))}:| + P |f(5a$7tmI£Tx) - f(s,9, tmlq‘ify)\ (T)}

f(s7$7tilqﬁiix) - f(sa ymlqﬂfyﬂ (ti—l—l)

m—1
H@%§}m+Lm+np@ﬂi

1=0

+ |t @) =l (wtis)| |

+mﬁxf“Lﬂaxmmﬁkw—:ﬂ&yﬁmﬁkw}ﬂﬁ})

m—1
o [tllgl f(S,:L‘,tiIlﬁ_iIL‘) — f(S, yﬂﬁzjzizy)‘ (ti+1)
=0
+ liirt (@(tin)) =it (yEs))] |
m—2
L Z V(i +1,m) [tif,;:i_% f(s,m,tilgfx) - f(S,y,tiI(iiy)l (tirr)
=0

* |¢ir (oltinn) — 9l (ot ]

f(S,.%‘,ti[qﬁiix) F f(s,y,tifﬁ;y)| (ti+1)

+ e (2ti) = i (y(tin)] ]
+tm15:1n ‘f(S,{L’,tm[(']BWT.T) T f(SaxatmI(/IBT?x)( (T)

(M{A1 + MyAs+ AyLy + AsLo) ||z — yllpe
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which implies that
1Qx — Qyllpc < (M7A1 + M3As + AsLy + AsLa)||lz =yl pe-
Thus the operator Q is a contraction in view of the condition (4.31). Conse-

quently, by Banach’s contraction mapping principle, problem (1.4) has a unique
solution on J. The proof is completed. O

4.2 Existence results for BVP. (1.5)

For computational convenience, we set

3 (t— o222 )(t; — tiy) !
Q = = L LTy -
! 24Ty (o1 + 1) 2; T, (1)

Tm+1 t _tz 1 al it
o 4.19

_'_4 qu Oél 1) ’ ( )

3 3.~ i
5 Eli S §M2 Z(T R, ti) 35 ZmMZ (420)

=i}

Now we present our first existence result for the problem (1.5) which is based
on Schauder fixed point theorem.

Theorem 4.2.1 Assume that

(Hy) there ezist continuous functions a(t), b(t) and nonnegative constants My,
My such that

lf(t, x)| <alt)+06(t)|z|, (t,z) e JXR, (4.21)
with supye; |a(t)| = ar, sup,es |b(t)] = b1 and

Then the anti-periodic boundary value problem (1.5) has at least one solution
on J if
blgl < 1. (423)

Proof. Let us define a closed ball Bg = {x € PC(J,R) : ||z| pc < R} with

a§0 +€2

R
SR Ao
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where aq, b are defined in (H;) and €, )5 are respectively given by (4.19) and
(4.20). Clearly Bp is a bounded, closed and convex subset of PC(J,R). Now
we show that the operator A : PC(J,R) — PC(J,R) defined by (4.2) has a
fixed point in the following two steps.

Step 1. A: Br — Bg.
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For any x € Bpg, using (2.7), we have

Az(t)] < —Z[Hf;zwu ti, ()] +

o (e tiziate)|
o1 (e it )]}
1 "

71
g |53 {u e ete)

LSS - e ot +

_|_

sOI(“fJZ o(t))| } + %tml‘”‘m‘llf(T,x(T)H]

o (o) |
o))

+Z [ I 2(t))] +

*Z“—W{z st (b ()] +
+tk1aklf(tv :L‘(t))l

Z (a1 + bullellpo)e T2 1(t) + M)

IN

p Lot
+ 5 2@ =89 { (@ + bullol o) I 110 + Mo}
i=1
1
+ 5 (@ + billallpc)e, I 1(T)

I3

1 r
+5 (3 A Fhlelloh 1) + M)
1

3 & ilelro)euFgn (D)

+ S\ [ a1 + ||zl po)e I3 1) + Ml]

p—

+

N\

(T =) {(al +bifllpe e, It~ () + M2}

I
o

s

+ (CLl . blul’”pc)tm[q ml(T)

3 — (tz i ti—l) i—1 5
32T ey )t ollellee) 5w,

+§i<T_t') (ti —t¢-1)“""1_1(a byl pe) + M
2 : (3 Fq171 (()47471) ¥ 1 PO 2

m+1 i
(ti —tl G-t T
—Z L oy 4 lele) + M

4
= a1}y + QQ + b1||l’||P091 <R,
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which implies || Az| pc < R. Therefore, A : Br — Bg.

Step 2. The operator A : PC(J,R) — PC(J,R) is completely continuous on
Brg.

Let supy pyesxny |f(t2)| = Fi. For any 71, 7 € Ji, k = 0,1,...,m, with
71 < Ty, We have

m+1 L
1 (tz — ti_l)a“1 1 mM2
_ < E3 - F
|Az(1s) — Az(ry)| < |7 — 7 [2 Zl IR + =
Ofl 1—1
F, + M.
+|m — T1|Z{ " Oéz 1) 1+ 2]
F1 2 ap—1
_/ tk (Tl - tkq)%)((;:kil)tkd%s )
ti

which is independent of x and tends to zero as 7 — 73 — 0. Therefore A is
equicontinuous. Thus ABg is relatively compact as ABr C Bp is uniformly
bounded. In view of the continuity of f, ¢, and ¢}, &k = 1,2,...,m, it is
clear that the operator A is continuous. Hence the operator A : PC(J,R) —
PC(J,R) is completely continuous on Bg. Applying the Schauder fixed point
theorem, we deduce that the operator A has at least one fixed point in Bp.
This shows that the problem (1.5) has at least one solution on J. O

In the next existence result, we make use of Leray-Schauder’s nonlinear
alternative. In the sequel, we set

3 = (tz T ti_l)ﬁFl
Q3 = = 4.24
VL Z Do (Bicvak 1)’ (4:24)

=i

m

3 i/ (T = tz)(tz 5 tz‘_ %‘1 i’ tz — tl 1 %
Q=) o Z (4.25)

2 i=1 F‘Zi—l(Vi—l + ]‘ 1) CI1 1 ,}/Z 1 + 1)

Theorem 4.2.2 Assume that

(Hsy) there exist a continuous nondecreasing function ¢ : [0,00) — (0,00), a
continuous function p : J — RT with p* = supsc; [p(t)| and constants
Ms, My > 0 such that

|f(t o) < p)v(lz]), V(t,z) € xR, (4.26)
and

lon()] < Malzl, |oi(@)| < Mylz|, Yo eR, k=1,...,m; (4.27)
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(Hs) there exists a constant N > 0 such that

(1 — MgQg — M4Q4)N
p* (V)

where 3, Qy are respectively given by (4.24) and (4.25).

> 1, M;3Q3 + MyQy < 1, (428)

Then the problem (1.5) has at least one solution J.

Proof. We shall show that the operator A defined by (3.1.2) has a fixed point.
To accomplish this, for a positive number p, let B, = {x € PC(J,R) : ||z| pc <
p} denote a closed ball in PC(J,R). Then for x € B,, t € J and using (2.7),
we have

Art)] < 53 P elp)e, B ) + oM JE (8]

N | —

i

i

(T = 1) {0 I M (0) + p M (8 }

_l’_
N | —
H'Ms

1
m

POl % 553 (oo T

Wk

| —

.
Vi1 1 * am—1

+pM4ti—IIqZ—1 1(tl)} + 5]) Qb( ) man:n 1(T)

—l—Z[p?ZJ tioidg ot 1(t:) + p My, 1Iqﬁf L1t )]

30T 1) {5 0o T2 ) + M T 1))
=1

+ Y (p) Ly LU(T)
= pY(p)Sh + pMsQs + pMyQy = K,
which implies that ||Az|pc < K.

To show that the operator A maps bounded sets into equicontinuous sets
of PC(J,R), we take 71,75 € Jj for some k € {0,1,2,...,m} with 73 < 7 and
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x € B,. Then we have
|Az(T2) — Ax( )I

m+ - oe, 1—1 _ ’Yz
pM4 t tz 1
< -7
< 1\[ g e o et
_ az Tl ( i —t 1)%‘—1
+lTo — T + pM,
ne ”ZJ e AT e
p w( ) ap—1
+W /tk tk<7_2_tk®‘1k>((]kk )tdeks

T1
_ _ (o —1)
/ ty (Tl tg (I)Qk)qk tg koS )
tg

which tends to zero independent of x as 7, — 7. Thus, by Arzeld-Ascoli theo-
rem, the operator A : PC(J,R) — PC(J,R) is completely continuous.
Finally, for A € (0, 1), let x = AAz. Then, as in the first step, we can get

lallpe < p*0(llzllpo) + I2llpeMsQs + 2l peMiu,
which can alternatively be written as

(1 — M5Q3 — MyQy)||2|| pc

p(llzllpe)h

In view of (Hj), there exists IV such that [[z{|pc # N. We define U = {x €
PC(J,R) : ||z||lpc < N}. Note that the operator A : U — PC' is continuous
and completely continuous. From the choice of U, there is no =z € 0U such
that x = AAx for some A € (0,1). Consequently, by the nonlinear alternative
of Leray-Schauder type (Lemma 2.4.17), we deduce that A has a fixed point

x € U which is a solution of the problem (1.5) on J. This completes the proof.
]

<1

In the last theorem, we apply Banach’s contraction principle to establish the
uniqueness of solutions for the problem (1.4).

Theorem 4.2.3 Assume that there exist a function W(t) € C(J,RT) with W =
sup,e; |W(t)| and positive constants Ms, Mg such that

and
(@) = ep(y)| < Ms|z —yl, |op(z) = i) < Mslz —yl, 2,y €R, (4.30)
fork=1,2,... m. If
WQl + M5Q3 2 M6Q4 < 1, (431)

then the problem (1.5) has a unique solution on J.
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Proof. For any z,y € PC(J,R), we have

IN

<

|Az(t) — Ay(t)]

1 (0%
> [llfmftz,x) [t )| + sy 1o = y)(t:)

m

[\

1 m
£ (T=1) Ve T At 2) — £t )| + Mow T = (89 }

1 Tl &
g i 8) ~ HE = 553 (o Ty 50 2) = fa)

s i
M Tl = 00 )+ g5 ) — AT
+Z o L i) = f ()] + Mg 10—yl (4)]

+ Z(t - tl) { ti— 111(])7 v 1’f<t17x) - f(tlay)| + M6t7, 1[(7; l’x - y’(tl)}

+tk1ak|f(t z) = f(t,y)l
(WS + M5Q3 + MeS2a) ||l — yllpc,

which yields

Az — Ay|pc < (W + M:Q3 + Me)||z — yl|pe-

By (4.31), we conclude that A is a contraction. Thus, by Banach’s contraction
mapping principle, the problem (1.5) has a unique solution on J. This completes
the proof. O
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Chapter 5

Conclusions

In this chapter, we give conclusions by presenting some examples for the illus-
tration of our results.

5.1 Examples of BVP. (1.4)

Example 5.1.1 Consider the following boundary value problem of impulsive frac-
tional q-integro-difference equations with separated boundary conditions:

( gkpgéifgg(t) z %e—w%) e (tli+ :B(t))2 + % £ [0,4/3)\ {t1, b, L5}
AL ) # msin(ﬁx(tk)), oy = g—, k=123,
o Da () = ?k—nggzgmm(t’“) = 78k(|f$k\)al(t)|)’ (N g

\ %x(O) 4 % 0D2(0) =0, %x <§> v ngg:c (g) _0.

(5.1)

Here o, = (2k* + 3)/(k* + 2), gx = (3k +2)/(5k + 3), B = 2k + 1)/2, w =
(k +1)/ (k> +2), k= 0,1,2,3,ts =k/3, k=1,2,3,m =3, T =4/3, \ = 1/2,
Ay =2/3; & =2/5 and & = 3/4. With the given information, it is found that
|A| = 0.0432973538. Also, we have

2tz e 2 1 1
" x — =T A
. 2] I
_ - Y < *. = N bl S <—,k‘:1,2,3.
lox(2)] ‘667r(k+1) sin(rr)| < 66n ok ()] ‘781{:(1+|:17|) =78
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With Ly = 1/66 and Ly = 1/78, we obtain LAy = 0.9927769903 < 1. Thus all
the conditions of Theorem 4.1.1 are satisfied. Therefore, by the conclusion of
Theorem 4.1.1, problem (5.1) has at least one solution on [0,4/3].

Example 5.1.2 Consider the following impulsive boundary value problem

(5.2)
Here o = (2k* + 2k + 5)/(k* + 2k + 3), qx = (K* + k + 2)/(k* + 2k + 3),
Br = (K*+2k+4)/(k*+2k+3), e = (K*+k+1)/(K*+2k+3), k=0,1,2,3,4,
th=k/5, k=1,234m=4,T =1, )\ = 1/5, \y = 3/10, & = 4/15 and
& = 7/20. Using the above data, we find that |A| = 0.02280828040 # 0, A; =
6.560295012, A3 = 0.5907970651, Ay = 21.29456817 and A5 = 17.30334490. To
find Ao(NV), we see that

1 4k 1
— o < — =N
lox ()] ‘401” arctan ( B \x(tk)l) \ %0 1
sin(kr/7)  |x(tx)] - B\
85 (L+|z(t)]) | — 85

for k = 1,2, 3,4, which leads to As(N) = 0.4697508657 and also (H3) is satisfied.
Choosing two continuous nondecreasing functions wy,ws : [0, 00) — [0, 00) as

|0k (@) = Ny,

1 1
wy(r) = =5 wo(z) = e
we obtain
1
lor(@) = wr(y)] < %!x —yl =wi(jz — y|),
* * 1
lor(®) = pp(y)] < glx —y| = wallz — yl).

Setting Dy = 1/50 and Dy = 1/85, it follows that Dy Ay+DsAs = 0.6294601269 <
1. Thus the condition (Hs) holds. In addition, we have

= 1 4 |z|
st =[5 (1ol 5 +4

2

t
= 200<

+ 3lz| + 1) + |y|.

(o s t? 1+ |z(t)] S
t'“D:zQIz’?ffs x(t) = 100 <|:c(t)\ o m) + tk[kg?};k-%sx(t), te[0,1]\ {ts,...
Ax(ty) = e arctan (%Tﬂlx(tkﬂ) , k= g, kE=1,...,4,
D ) D) = T s =

\ ; (0) + %017233(0) 0, %x (1) + %%D%gx (1) =0.
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Thus (Hy) is satisfied with p(t) = /200 and ¥ (|z|) = 2 + 3|z| + 1. Further,

su ! — 2815409997 >

re(ogo) p*(r)Ay + Ag(N) 1—A;

= 2.443775239,

where p* = 1/200. Therefore the condition (Hg) holds. Thus the conclusion of
Theorem 4.1.2 implies that the problem (5.2) has at least one solution on [0, 1].

Example 5.1.3 Consider the problem

( 4k24+4k+3 s 2 2 —t 3k242k+3
b ahtd sin“ ¢ x2(t) + 2|z(t)] 3e b ohtd 4
5D e o) = 5 ( tod Szt (1) + 2,
2k2+3k+4 2(t + 30) L van Ix(t” t+10 2k2+3k+4 3

t€[0,5/4] \ {t1,...,ts},

1 (2%(ty) + 2|a(tr)] 3 k
Ax(ty) = =, lti=—,k=1,....4
() = o0 ( 1L Yo yamd |02 e
. B 1 2 k
Dg t AE D3 2 _4k+3 t — W1 Sy t =, t =—,
ty mw( k ) (Y | 22kk22—_3kk-:-34x( k) 50k Sln(x( k‘)) + 5 k 4

2 3 4 (5\ 5, u (5
\ gl’(O) + ?OD%x(O) = O, §.’L’ (Z_l) + gl %J} (Z) =
(5.3)

Here oy, = (4k* +4k+3)/(3k* +2k +2), qp = (2k* + k+3)/(2k* + 3k +4), B =
(k2 42k +3)/(3k*+ 2k +2), v = (2k* +2k+1)/(3k*+2k+2), k = 0,1,2,3, 4,
th = k/4, k=1,2,3,4, m=4, T = 5/4, \; = 2/5, Ay = 3/7, & = 4/9 and
& = 5/8. With the given values, we find that |A| = 0.1515229972 # 0, A; =
6.322759092, A3 = 0.7537203342, A, = 11.94663857 and As = 11.27343204.
Also, we have

sin®t ™

e
t — f(t - o), sl 8 — —
| [t z,y1) — f(E 22,92)| < ‘(t2+30) |71 $2|+‘t+10 [y — 12l
1
len(@) = eely)l < =l =yl;
* * 1

Clearly Mik = 1/30 and M2* == 3/10 Hence, MfAl -+ M;Ag + A4L1 + A5L2 =
0.9012761489 < 1. Thus all the conditions of Theorem 4.1.3 are satisfied. There-
fore, it follows by the conclusion of Theorem 4.1.3 that problem (5.3) has a
unique solution on [0, 5/4].
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5.2 Examples of BVP. (1.5)

Example 5.2.1 Consider the following anti-periodic boundary value problem for
impulsive Caputo fractional q-difference equations:

(

kt3 1 z2(t)
CDFZ p(t) =22+ 14+ —sin’t————, t€[0,2]\ {t1, 12, 3},
WD o) 87 "1+ ]x(t)] 0,21 th t2. 1)

261 7 a2
ka 1(75 v i (G ) k
Ax(tk) = e o ’“2*ék+8 ty = 5, k= 1,2, 3,

2k+5 k
) — a2 2 _r
tka2—§k+4I(tk) tk_le2—ék+8m(tk) g <1Og (1 * tk_l]k2_ék+8x(tk) )> s G 2’

z(0) = —x(2), OD%x(O) skl b i (2 1

2 4

(5.4)

Here o, = (k+3)/(k+2), ¢ = 1/(k*—3k+4), k =0,1,2,3, Br_1 = (2k—1)/2,

Y1 = 2k +5)/2, ty = k/2, k = 1,2,3, m = 3, T = 2. With the given

information, it is found that € = 7.575532753. Also, we have

1 2 1

2t + 1 + —sin’t < < 2% + 1+ = sin® |z,
8 1+ |z| 8

[f(t, @) =

<e, |gi(2)| = |k cos (log (1 + |2]))| <9, k=1,2,3.

N2
)] = e

With B = sup,coo |(1/8)sint| = 1/8, we obtain BQ; = 0.9469415941 <
1. Thus all the conditions of Theorem 4.2.1 are satisfied. Therefore, by the

conclusion of Theorem 4.2.1, the problem (5.4) has at least one solution on
[0, 2].

Example 5.2.2 Consider the anti-periodic impulsive boundary value problem of
fractional q-difference equations given by

(i a2 (loge <@+2>>2, Le[0,5/31\ 4t . L),

k2 —4k+6 (2 aF t)2

1 ) Pt A k
Ax(ty) = sin w0\, L Z/k R, 4

11+ & 2 6htil 3
1 kit k
+) 4 . _k
t’“Dmx(t’“) tk—lem(tk) BT e o(t), b 3’

| 2(0) == (3) (0 oDsa(0)==4Dyi (g) |
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Here ap = (k2 +5)/(k2+3), g = 1/(k* — 4k + 6), k = 0,1,2,3,4, Bp_y =
2+(=1)*1/2, 1 = @+(=D)* Y /2ty = k/3,k=1,2,3,4,m=4,T =5/3.
Using the above data, we find that Q; = 6.316994013, Q3 = 2.358729544,
Qy = 0.6481929403, and

1 |z] ’ 1 2]
t = |—=I|1 — +2 < — +2
0= g (o (5 +2)) | < e (7 42).
|0k (y)] sing] < gl 16k()| = 2] < 712l k= 1,2,3,4
PrlY 11+ k 1Hy_12y7 Pr < 3+ k = y1=b ) Ly Iy

Setting ¢(x) = (v/4) + 2, p* = Supyps/3 11/(2 + 1)*|=1/4, Mz = 1/12 and
M, = 1/4, we find that M5Q3 + M, = 0.3586090304 < 1. Also, there exists a
constant N such that N > 12.80927819 satisfying (4.28). Clearly the hypothesis
of Theorem 4.2.2 holds true. Thus the conclusion of Theorem 4.2.2 implies that
the problem (5.5) has at least one solution on [0,5/3].

Example 5.2.3 Consider the following impulsive anti-periodic problem of frac-
tional q-difference equation:

( k2 +k+3 e—t sin(2t + 1) {L‘2(t) + 2|l’(t)| 1
C_D k212 ) == +_, t60732 t)__.7t ,
b mx() t2 + 30 L+ |z(t)] 2 [0.3/2]\ {ta 5}

2k+1

Tk 2 k
AZE(tk) = 2—5tan_1 (tkl‘l 2 1 x(tk)> Tl — Z’ = 1, nh ,5,

k2 —7k+14 >
2k2 —4k+3
tk_l]kQ 712k+14 x(tk> 3 k
+ - —
tkaQ—ék-s-sx(tk) — tk*le2—7lk+14x(tk) o 2k2—4k+3 + Zl’ bty = Z’
5]€ 1 -+ tkfll 12 l’(tk)
k2—7k+14
0) = k R A s
\x()——f 2] 0%95()——% A5
(5.6)

Here oy = (k2 +k+3)/(k*+2), qp = 1/(k* — 5k +8), k= 0,1,2,3,4,5, Bp_1 =
(2k41)/2, Yoy = (2k2 — 4k +3)/2, tj, = k/4, k = 1,2,3,4,5;m =5, T = 3/2.
With the given values, we find that 2, = 5.173430458, (23 = 0.2141916028 and
Q4 = 1.375385103. Also, we have

2¢ 'sin(2t + 1)
1248 30

|f(tx1) — [t 22)] <

|I1 -~ ZL'2|,

Tk — _ 7
[prlyr) — 2rva)l = 52 [tan"" yy — tan~ ' yo| < =l = v,
1

L -l ol | 1
— 5

5k |1+ |z 1+

lpi(21) — pr(22)| = |21 — 2z, k=1,2,3,4,5.
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It is easy to see that W = 1/15. Hence, W + M5Q3+ Mgy = 0.9198406284 <
1. Thus all the conditions of Theorem 4.1.3 are satisfied. Hence it follows by
the conclusion of Theorem 4.2.3 that the problem (5.6) has a unique solution
on [0,3/2].
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